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1.  Introduction 

Robust forecasts (unbiased and skilful) are vital in providing a comprehensive flood warning 
service to people and businesses at risk from flooding. For fluvial and storm surge flood 
forecasting, rainfall–runoff, flow routing, 1D-hydraulic and 2D-hydraulic models are often 
combined into model cascades and are run automatically in operational flood and storm surge 
forecasting systems. 

Often, the outputs from these models are currently deterministic with one model run delivering 
the flood forecast which is assumed to be the best representation, although Forecasting Duty 
Officers assess and advise on the uncertainty in forecasts based on experience and 
judgement. However, it is widely known that the accuracy of flood forecasts can be influenced 
by a number of factors, such as the accuracy of input data, and the model structure, 
parameters and state (initial conditions). Having a sound understanding of these modelling 
uncertainties is vital to assess and improve the flood forecasting service. This project 
(2009.06.01) has been carried out under the Flood Control 2015 program. This project has 
been carried out alongside / in cooperation with a R&D project SC080030 commissioned by 
the Environment Agency (Environment Agency, 2009). As a result an overarching framework 
for assessing uncertainties in fluvial and coastal forecasting in a risk-based manner has been 
developed with the aim that it is robust enough to be considered for use in an operational 
environment.  

This framework is supplemented by a number of practical case studies which will 
demonstrate how certain uncertainty techniques can add value to the forecasting process 
(see Appendix B&C). 
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2. Framework 

The main aim of the uncertainty framework is to assist flood forecasting experts (Monitoring 
and Forecasting Duty Officers) involved in commissioning, maintaining and improving models 
to decide which uncertainty estimation approaches are suitable in which circumstances and 
how they should be applied.   
 
Some key goals are (1) to make clear what the sources are of the uncertainties (2) to make 
clear how these uncertainties propagate through the model cascade used for forecasting, and 
(3) to determine what methods are available to quantify and reduce the uncertainties. 
 
A particular focus is on cascades of models, such as rainfall-runoff, hydrological and 
hydrodynamic routing models, and the choices to be made regarding data assimilation and 
calibration (or conditioning) of forecasts at each model boundary.   
 
For example, when assessing the level of risk, the framework describes which method will be 
used, and how the resulting decision will influence the choice of method. By contrast, future 
guidelines will provide more guidance on how to derive these estimates (early examples of 
how these outputs might appear are shown in the appendices when applying the framework 
to the case studies). 
 
The key components of the framework are described in the remainder of this chapter under 
the following section headings: 
 

• Basic Principles – discusses the background to the key uncertainty estimation 
approaches of forward uncertainty propagation, data assimilation and 
conditioning that were established in the Phase 1 Report 

 
• Choice of Method  - discusses the key factors that influence the choice  of 

uncertainty estimation method 
 
The framework is intended to be generic and, with some further development, could be 
applied in any organisations responsible for flood and storm surge forecasting.  To illustrate 
this wider application, Appendix B&C provides examples of application of the framework to 
the coastal forecasting models of the Storm Surge Warning Service (Stormvloed-
waarschuwingsdienst/SVSD) and the forecasting system for Rhine and Meuse. 
 
However, a key assumption in applying the framework is that an integrated catchment model 
is already available for the catchment under consideration, and that it is the uncertainty in 
model outputs which is of interest. If no model exists, then there are a number of guidelines 
on model development available from the USA, Europe and elsewhere, including the 
Environment Agency’s Real Time Modelling guidelines (Environment Agency, 2002). 
A brief introduction is therefore provided to the issues to consider, with references for further 
reading. 
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2.1 Basic Principles 

2.1.1 Introduction 
 
There are many sources of error in making flood forecasts. Such errors mean that all 
forecasts must be considered uncertain, and that there is a real possibility of getting a 
forecast wrong, both by not issuing a warning and flood damages being incurred or people 
injured, or by issuing a warning and no flood damages being incurred (i.e. the false alarm or 
“cry-wolf” problem).  
 
It has long been recognised that both types of error will have an effect on the public 
perception of and reaction to flood warnings. Flood forecasting is therefore not just a scientific 
problem, it is a problem of managing and communicating uncertainty to specialist users (e.g. 
Monitoring and Forecasting Duty Officers), and more widely to the public, local authorities and 
the emergency services.  
 
One way of dealing with the uncertainty associated with a forecast is simply to be specific and 
supply a measure of that uncertainty to assist users in decision-making.  In order to develop 
an effective measure of uncertainty we need to address three critical issues: 
 

• the representation of different types of uncertainties in the forecasting system 
 
• the (preferably optimal) constraint of uncertainty in forecasts by means of real-

time data assimilation 
 
• the presentation of forecasts and their associated uncertainties to duty officers 

and possibly to other key decision-makers and the public.  
 
This framework considers methods to address the first two of these problems whilst other 
Flood Control studies (2009.07 and others) are considering the third more general issue of 
the communication of uncertainty. 
 
Real-time flood forecasting applications often make use of a cascade of inter-linked 
hydrological and, in some cases, hydrodynamic models, embedded in a data-management 
environment such as that of FEWS Rivers Rhine and Meuse.  Model cascades (or integrated 
catchment models) are typically run in two principal modes of operation: 
 

i) a historical mode – in which models are forced by hydrological and 
meteorological observations over a limited time period prior to the onset of the 
forecast (e.g. to initialise model stores) 

 
ii)  a forecast mode – in which models are run over the required forecast lead 

time, forced by outputs from other models, with the internal model states at 
the end of the historic run taken as initial conditions for the forecast run 

 
Increasingly, models are forced using meteorological forecasts of precipitation and 
sometimes other variables, such as air temperature (e.g. where snowmelt is an issue) and 
evaporation, in addition to the use of forecasts from river locations further upstream.  
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Figure 2.1 illustrates these different modes of operation, and how they differ from the much 
longer period of records which are typically used in model calibration. 
 

 

 

Calibration Period Historical 
Mode

Real-time operationModel Calibration

Forecast 
Mode

Time Now

 
Figuur 2.1 Illustration of historical and forecast modes of operation 
 
In each of the steps in the model and data processing chain, uncertainties can be attributed to 
the model inputs, the model structure, internal model states and model parameterisation, with 
the total predictive uncertainty accumulating in the forecast outputs (e.g. Beven 2009; 
Pappenberger et al. 2007).  
 
Depending on the lead-time at which forecasts are issued in comparison to the hydrological 
response time, the dominant uncertainties will lie in the inputs derived from observations, the 
rainfall-runoff and routing models, or, if applicable, the hydrodynamic models, and from the 
uncertainty in rainfall and other meteorological forecasts (if used).  The various time delays in 
the warning process also need to be considered, such as the time taken to collect data, run 
models, post-process results, take decisions and issue flood warnings, as discussed later. 
The process of making a flood forecast can therefore be subdivided into three problems (e.g. 
Moll, 1986): 
 

• Estimation of the actual state of the basin at the start of the forecast, which 
consists of interception storage, soil moisture storage, groundwater storage, 
other possible storages (e.g. snow storage), and the water levels in rivers, 
reservoirs, wetlands and lakes; 

 
• Modelling of the movement of water during the period covered by the forecast 

lead-time through the whole cascade of rainfall-runoff, flow routing, and 
hydrodynamic models; 

 
• Forecasting of the model inputs during the selected lead-time. These can 

consist of meteorological inputs, but also inflows from locations further 
upstream or at other model boundaries (for instance tidal influences, 
abstractions and discharges). 
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For an individual model component within an integrated catchment model, these three 
problems result in uncertainties / errors in the forecast consisting of: 
 

• Initialisation Errors: due to errors in the observations used to estimate 
precipitation, potential evaporation and temperature, discharge or other 
boundary conditions in the historical mode of operation; 

 
• Model(ling) Errors: arising from approximating parameterisations/model 

structures, uncertain model parameters, model resolution limitations, 
uncertain structure operating/management rules, etc. 

 
• Forcing Errors: errors which occur in the forecast mode of operation when a 

model component is forced with an input derived from another model with its 
own Initialisation and Model Errors; for example a Numerical Weather 
Prediction model or the hydrological or flow routing outputs at a flow 
forecasting point further upstream. 

 
Note that the initialisation errors are usually not independent from the model errors because 
normally a model is used to derive the estimate of the actual state of the basins; for instance 
via data assimilation or just driving the model (cascade) in historical mode until the start of the 
forecast to estimate soil moisture storage and other variables of interest. 
 
Within an Integrated Catchment Model, these errors combine as illustrated in Figure 2.2.  This 
figure shows the picture for the whole modelling cascade, including the hydrodynamic and 
coastal components (if relevant). Initialisation and modelling errors occur in each of the 
different components resulting in forcing errors in the downstream model. The arrows indicate 
the source of the forcing error, modelling error(s) and initialisation error(s) in the model(s) 
higher up in the model cascade.   
 

  

  
Figuur 2.2 Flood and storm surge forecast model cascade indicating the sources of the errors in the forecasts. 

The arrows indicate the errors in the forcing (when looking at it from the viewpoint of the receiving 
model cascade component) or model output (when looking at it from the viewpoint of the producing 
model cascade component) 



 

 
1200379-001-ZWS-0002, 28 December 2009, final 
 

 
2009.06.01  
 

9

 

2.1.2 Operational Strategy 
 
The errors in the forecast model cascade need to be quantified and/or reduced for the 
following reasons: 
 

• to provide more accurate forecasts; 
 

• to provide accurate information regarding the uncertainty of the forecast (and, 
if possible, unbiased and skilful estimates); 

 
Quantification can be seen as providing a description/method to quantify the uncertainties 
and typically involves the use of forward uncertainty propagation techniques to give an idea of 
the uncertainty in the forecast. Of course, where suitable information is available, it is 
preferable to first reduce the uncertainties. This can be achieved by two key approaches (1) 
making use of recent observations (data assimilation) and (2) applying adjustments based on 
the historical performance of the forecasts made using the model cascade (forecast 
calibration). 
 
Data assimilation is a feedback system where the forecast is conditioned on all available 
information that is available at the time the forecast is made (the forecast origin or ‘time now’). 
This includes information on the current state of the system, but also entails past performance 
of the forecast system (possibly further conditioned on secondary information such as the 
time of year, synoptic situation etc.).   
 
Often, the term data assimilation is used to describe the use of real-time recent data to 
improve forecasts, whilst the term conditioning (on historical data) or forecast calibration is 
used to describe methods for improving forecasts based on the historical performance (i.e. 
not taking account of any real-time data which may be available). Alternative terms in flood 
forecasting include real-time updating or real-time adaptation. 
 
Figure 2.3 shows schematically where these different approaches interact with the forcing 
errors, the rainfall-runoff, flow routing and hydrodynamic models, and the forecast produced 
by the end-to-end model cascade.  
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Figuur 2.3 Flood and storm surge forecast model cascade indicating the sources of the errors in the forecasts. 

The arrows indicate the errors in the forcing (when looking at it from the viewpoint of the receiving 
model cascade component) or model output (when looking at it from the viewpoint of the producing 
model cascade component), and where and with which methods uncertainty can be reduced and 
quantified in the model cascade (A) Meteorological Forecast Calibration, (B) State Updating, (C) 
Parameter Updating, (D) Forecast Calibration/Output Updating 

 
These four operational approaches to updating which are described in the figure are more 
general forms of the widely used terminology in hydrological forecasting of input updating, 
state updating, parameter updating and output updating (e.g. Refsgaard, 1997; Serban and 
Askew 1991).  The main operational approaches to quantifying and reducing these sources of 
uncertainty are as follows: 
 
 
A: Meteorological Forecast Calibration 
 
Rainfall forecasts are widely used in flood forecasting applications, particularly on fast 
responding catchments, and to provide long term outlooks on the potential for flooding.  The 
main input is usually forecast rainfall, althoughforecasts of air temperature and other 
parameters may also be of interest in some applications (e.g. snowmelt forecasting). 
 
An important aspect of hydrological ensemble forecasting is whether current atmospheric 
forecasts account for all of the important meteorological and climatological uncertainties. 
However, existing raw ensemble weather and climate forecasts meet the above properties 
only to a limited degree. This is due not only to the number of ensemble members being 
limited by computing resources (and hence subject to sampling uncertainty), but also 
currently most ensemble forecasting systems do not account for all significant sources of 
uncertainty, such as that arising from model parameterisations, and grid resolution. The result 
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is that the forecasts are not necessarily reliable; they can be biased towards the mean and 
may not display enough variability, leading to an underestimation of the uncertainty (Buizza et 
al. 2005). 
 
Different approaches have been proposed to derive reliable probabilistic forecasts from raw 
model ensembles, a process that often involves a combination of bias correction and 
downscaling in some form (see Weerts et al., 2010 and Environment Agency 2009  for an 
overview). Most of these methods are based on the idea of adjusting the current forecast 
using information derived from past forecasts and corresponding observations; an approach 
which is often called the method of Model Output Statistics (MOS). However, an important 
conclusion by Wilks and Hamill (2007) is that there appears to be no single best forecast 
method for all applications, and that extensive work is necessary on ensemble correction 
methods in the future.  
 
These methods also typically require extensive hindcasting (>30 years) by meteorological 
offices which is often a problem due to limited money and computing resources, although 
several organisations such as NOAA/NCEP and ECMWF have performed such exercises. 
Moreover, the operational models used by meteorological offices are often changed several 
times per year and each time the model is changed an assessment should be performed 
because the performance of the meteorological model might have changed in space and 
time.  Due to these practical limitations most flood forecasting agencies presently use the raw 
ensemble outputs as inputs to their models.  
 
Some flood forecasting offices also use a so-called poor man’s ensemble constructed of 
several deterministic models (see also Werner et al. 2010, Cloke and Pappenberger 2009; 
Environment Agency 2009), particularly for longer range and seasonal forecasts.  Some 
research studies have also explored approaches to evaluate and combine outputs in real-time 
using techniques such as Bayesian Model Averaging (see Section 4). Techniques such as 
weather matching or analogue approaches have also been used with considerable success; 
these seek to identify features of the general atmospheric circulation in common with previous 
events, from which an ensemble of likely rainfall fields can be extracted from a historical 
archive (e.g. Obled et al. 2002).   
 
One consequence of the uncertainties in meteorological inputs is that data assimilation or 
updating techniques, based on real-time river level or flow observations, are  generally 
required when using rainfall or other meteorological forecasts as inputs to integrated 
catchment models, and are often combined with forecast calibration or conditioning 
techniques.  This topic is discussed below under the heading of ‘Output Updating and 
Forecast Calibration or Conditioning’. 
 
 
B: State Updating - Data Assimilation 
 
One role of data assimilation, in both deterministic and ensemble hydrological forecasting, is 
to produce the best possible estimates of initial hydrological conditions (i.e. to constrain 
uncertainty at the start of the forecast). Besides a realistic representation of the system state 
(soil moisture, snow water equivalent, groundwater, etc.) by the ensemble mean, the 
ensemble members must provide realistic estimates of the uncertainty in the system state. 
Observed precipitation and temperature data will typically be used in establishing 
(hydrological) model boundary conditions. Available observations can be effectively used in 
quantifying and reducing the error in the modelled water levels and discharges from the 
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process models. These observations may include in-situ measurements of water levels, 
discharge, snow water equivalent, soil moisture and groundwater levels. They may include 
also remotely sensed observations from radar or satellites.  
 
State updating can be done via manual, sequential or variational data assimilation techniques 
(Beven, 2009; Seo et al. 2009, Weerts et al., 2009; Weerts and Serafy, 2006; Clark et al., 
2008; Heemink et al., 1997; Verlaan et al., 2005). Many flood forecasting offices use manual 
or deterministic state updating techniques in their flood forecasting system. However, 
ensemble data assimilation is still very much a research topic in operational hydrology. 
Moreover the question remains if the ensembles produced are really meaningful and this will 
probably depend very much on the assumptions made in the data assimilation scheme.  
Advanced time series analysis techniques, such as the Data-based Mechanistic (DBM) 
approach, also seek to combine the modelling and data assimilation stages, optimising the 
model outputs for the forecast lead times of interest. 
 
Quantification of initalisation uncertainty can also be performed via forward uncertainty 
techniques in a similar way to the use of ensemble forecasting in numerical weather 
prediction. 
 
C: Parameter Updating 
 
Model errors can also arise from uncertainties in model parameters, and from more 
fundamental issues with the representation of physical processes i.e. model structural errors.   
Model parameter updating schemes have been developed for some types of model, but 
generally other approaches are favoured (such as state updating) for models which have a 
physical or conceptual basis.  However, there can be some merit in sampling parameters 
within a given physically plausible range; an approach which is widely used in off-line 
research studies of model performance. One example is the manual modifications (MODS) 
approach that is used in the operational flood forecasting system used by the National 
Weather Service in the USA and which is now also available within Delft-FEWS.  
 
However, structural errors in hydrological models are very difficult to correct. Because these 
errors tend to be strongly correlated in time (for lumped models) or in space and time (for 
distributed models), addressing them through post-processing requires complex and often 
heavily parameterised statistical modelling. In principle these errors should also be treated as 
part of reducing initialisation errors (see above).  
 
One other way of looking at this problem is that using multi-model ensembles offers potential 
for accounting for structural uncertainty without such data- and parameter-intensive statistical 
modelling. Also, estimation theory states (e.g. Schweppe 1973) that combining informative 
forecasts from different models reduces forecast uncertainty (Georgakakos et al., 2004).  
 
An interesting operational example to mention is the flood forecasting system of the River Po 
in Italy where three different lines of model cascades have been setup to produce forecasts 
for the whole basin of the Po.  However, it is probably fair to say that explicit accounting for 
parametric uncertainty via parametric uncertainty processors and accounting for model 
structural uncertainty via multi-model ensemble techniques are only in their infancy in the  
operational arena. 
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D: Output Updating and Forecast Calibration or Conditioning 
 
In a similar way to the post-processing of meteorological forecasts (see above), post-
processing or output updating techniques have also been developed for hydrological 
applications. This is often done by applying simple autoregressive (AR) and/or moving 
average (ARMA) type models (Madsen et al. 2000; Broersen and Weerts, 2005). This type of 
error correction or reduction of forecast errors is used in many operational flood forecasting 
systems around the world.  Some approaches, such as adaptive gain updating (Lees et al. 
1994) also seek to both reduce and quantify the uncertainty in forecast outputs.   
 
The development of post-processing techniques for ensemble forecasts is less far advanced, 
although many probabilistic techniques are now also being researched and tested in several 
operational flood forecasting systems around the world.  For example, Bayesian uncertainty 
processors provide a promising approach (Krzyrsztofowicz, 2004). However, implementing 
such advances requires rather significant upgrades to current forecast systems, so it is likely 
that operational hydrologic ensemble forecasting will initially employ, a purely statistical 
“catch-all” ensemble post-processor to reduce and account for the integrated hydrological 
uncertainty (Seo et al. 2006), such as the Model Output Statistic (MOS) approach discussed 
earlier for meteorological forecasts  
 
A final observation is that techniques for post-processing of ensemble hydrological forecasts 
tend to follow or ‘lag’ those developed in the meteorological community.  For example, 
techniques such as quantile regression, Bayesian Model Averaging, and Model Output 
Statistics were first developed in meteorology, and other technical areas.  Whilst some 
techniques are now established, when considering the best approach to use, it is worth noting 
that in many cases the methods proposed in the literature are promising but yet need to prove 
themselves in an operational real-time forecasting setting. 
 

2.1.3 Long-term strategy 
 
Besides the operational strategy to quantify and reduces uncertainties real-time there is also 
a more long-term strategy necessary, as shown in Figure 2.4, which is focused on (1) 
improving hydrological, routing, hydrodynamic, storm surge models. This can include 
improvements to model structure, schematization, model resolution, calibration etc.  And (2) 
the introduction of new and/or better measurements and improved/other numerical weather 
predictions/forecasts. In the end, this will also help to reduce the uncertainties in the real-time 
flood and storm surge forecasts. Such improvements will help to reduce both initalisation 
errors and model errors during operational forecasting. 
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Figuur 2.4 Flood and storm surge forecast model cascade indicating the sources of the errors in the forecasts. 

The arrows indicate the errors in the forcing (when looking at it from the viewpoint of the receiving 
model cascade component) or model output (when looking at it from the viewpoint of the producing 
model cascade component), and where and with which operational methods uncertainty can be 
reduced and quantified in the model cascade (A) Meteorological Forecast Calibration, (B) State 
Updating, (C) Parameter Updating, (D) Forecast Calibration/Output Updating. Together with the long-
term options to improve the forecasting system (better models & better/more measurements) 

 

2.2 Choice of Method 
 
The choice for a specific uncertainty estimation method depends on a number of key factors: 

• Level of Risk – what is the risk at the forecasting points of interest, and hence how 
accurate does the method have to be and/or how much effort is it worth expending? 

• Lead Time Requirements – what minimum lead time is required for flood warning or 
operational reasons, and how does that compare to the catchment response time 
(assessed in the form of a catchment ‘Type’, on a scale of 1 to 5)?   

• Main Sources of Uncertainty – given the catchment type, what the the most likely 
sources of uncertainty (rainfall forecasts, river flow observations etc.) and what 
complicating factors may need to be considered (e.g. structures, reservoirs)? 

• Types of Models – what types of models does the integrated catchment model use, 
both in general terms (e.g. rainfall-runoff models, hydrodynamic models), and specific 
brands (e.g. HBV-96,PDM, ISIS, SOBEK, WAQUA, Delft3D), and how does this 
influence the choice of uncertainty estimation methods? 

• Operational Requirements – how will the forecasts be used operationally and how 
does this influence the choice of uncertainty estimation approach? 

• Runtimes – how much computer processing time is likely to be required for each type 
of method, and is this achievable with current systems? 
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• Performance measures – are estimates for model performance already available 
which would indicate which locations in the catchment/parts of the model should be 
focussed on? 

 
This section presents the key steps in applying the framework to take account of these 
factors, including the key decisions to be made, and the main steps towards reaching that 
decision.  Figure 2.5 provides a general overview of the decision making approach.  Note 
that the level of risk is used in several of the key decisions (although not all), and that 
some steps are optional, depending on what other information may be available. 

The background to development of the framework appears in Appendix A, whilst 
examples of applying the framework appear in Appendices B to D. 

The intention of this section is therefore to present a brief outline of the main contents of 
the framework, which might be used as a checklist, with more detailed information on 
applying it presented in the appendices.  A key decision for the guidelines will be to 
achieve an appropriate balance between the background material presented in Section 
2.2 and Appendix A, and the overall methodology. 

KEY FACTORS KEY DECISIONS

Complexity of approach

LEAD TIME REQUIREMENTS Minimum lead time needed 
Catchment response time

LEVEL OF RISK

TYPES OF MODEL Methods/Options Available 
Potential Run Time Issues

MAIN SOURCES OF UNCERTAINTY Key Sources of Uncertainty 
Complicating Factors

OPERATIONAL REQUIREMENTS Conditioning and Data 
Assimilation requirements

RUN TIMES Run Time Requirements Run 
Time Reduction Options

PERFORMANCE MEASURES Key Sources of Uncertainty
Optional

 
Figuur 2.5 Summary of key decisions arising from consideration of key factors 
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Tabel 2.1 Template for the worksheet used in the case studies 
Factor Key Decisions Main Findings 

What is the level of risk at individual 
Forecasting Points or flood risk 
areas? 

 

What is the level of risk at a 
catchment level ? 

 

Level of Risk 

What complexity of approach is 
generally to be preferred ? 

 

Flood Warning 
 

What are the lead time requirements 
for each Forecasting Point ? 

Outlook Statement 
 
Flood Warning 
 

What are the main forcing inputs for 
each Forecasting Point at those 
lead times ? Outlook Statement 

 
Flood Warning 
 

Lead Time 
Requirements 

What, at a catchment level, are the 
key forcing inputs to consider for 
flood warnings and outlook 
statements ? 

Outlook Statement 
 

What are the main sources of 
uncertainty for the catchment for 
flood warnings ? 

Initialisation Errors 
 
Modelling Errors 
 
Forcing Errors 
 

What are the main sources of 
uncertainty for the catchment for 
outlook statements ? 

Initialisation Errors 
 
Modelling Errors 
 
Forcing Errors 
 

Main Sources 
of Uncertainty 

What additional sources of 
uncertainty arise from complicating 
factors ? 

 

What choices of methods are 
available for the types of models ? 

 

What types of data assimilation 
routines are an option ? 

 

Types of 
Models 

What potential run time issues have 
been identified ? 

 

Is a purely qualitative approach 
sufficient for generating ensembles? 

 

Is data assimilation desirable or 
essential ? 

 

Operational 
Requirements 

Is conditioning of forecast outputs 
required ? 
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Are there run time issues for the 
candidate uncertainty estimation 
methods ? 

 Run Times 

What are the options for reducing 
run times ? 

 

Are suitable performance measures 
already available to evaluate 
sources of uncertainty? 

 Performance 
Measures 

Which sources of uncertainty (and 
locations) are identified ? 

 

 

2.2.1 Level Of Risk 
 
Key Decisions 

What is the level of risk for individual forecasting points or flood risk areas ? 

What is the level of risk at a catchment level ? 

What complexity of approach is generally to be preferred ? 

Key Steps 

Produce a catchment map or table of areas at risk, showing the level of risk at individual 
forecasting points 

Assess the risk at a catchment level  

Select the complexity of approach based on the level of risk 

In recent years, organisations such as the Environment Agency and the Rijkswaterstaat in the 
Netherlands have been at the forefront of developing risk-based approaches in flood 
management.  

This approach has also been adopted in flood forecasting and warning applications; for 
example, on deciding on an appropriate level of service in designing flood warning schemes.  
A similar approach has also been adopted here, and a key output is to define the level of risk  
at individual forecasting points, and at a catchment scale.   

The appendices provide background on the steps required, and on how the level of risk can 
be used as a deciding factor in the choice of uncertainty estimation method (and in the level 
of detail to use when applying the framework). 

 

2.2.2 Lead Time Requirements 
 
Key Decisions 

What are the lead time requirements for each Forecasting Point ? 

What are the main forcing inputs for each Forecasting Point at those lead times ? 

What, at a catchment level, are the key forcing inputs to consider for flood warnings and 
outlook statements ? 

Key Steps 
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Define the catchment response time at each forecasting point 

Define the lead time requirements, including an allowance for decision-making and warning 
times, and hence the catchment type 

Aggregate the findings to catchment level for flood warnings and outlook statements 

 

The forecasting lead-time required depends primarily on the lead-time requirement for flood 
warning, and may extend from as little as 1-2 hours to several days ahead.  

In the latter case, the shorter lead-time forecasts may be used in issuing the actual 
operational warning, while forecasts at the longer lead time are used mainly as guidance in 
moving to a flood alert status, rather than to guide the issuing of a flood warning. A distinction 
is therefore made between the lead-time required for issuing flood warnings, and the time 
required for a lower level of alert (called an Outlook Statement here).   

The appendices describe methods for estimating the lead time requirement and a catchment 
classification scheme for flood forecasting in which five types of catchment are defined 
(Types 1 to 5). 

 

2.2.3 Main Sources of Uncertainty 
 
Key Decisions 

What are the main sources of uncertainty for the catchment for flood warnings ? 

What are the main sources of uncertainty for the catchment for outlook statements ? 

What additional sources of uncertainty arise from complicating factors ? 

Key Steps 

Use the catchment types defined earlier to assess sources of uncertainty  

Assess the impact of complicating factors on uncertainty 

If information is not already available from previous studies (e.g. performance measures) an 
initial assessment of the main sources of uncertainty can be performed using the catchment 
classification scheme mentioned above.  This identifies which inputs and other factors affect 
the uncertainty in flood forecasting model outputs.   

The appendices describe the methodology which is used to link catchment type to 
uncertainty, and the influence of any complicating factors, such as from reservoirs and control 
structures. 

2.2.4 Types of Models 
 
Key Decisions  

What methods are available for the types of models being used ? 

What types of data assimilation routines are an option ? 

What potential run time issues have been identified ? 

Key Steps 
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Assess the uncertainties for the types of model in the integrated catchment model 

Consider complicating factors such as reservoirs and snowmelt models 

Assess options based on the model types in the integrated catchment model 

When considering which sources of uncertainty to consider, the individual types of models 
used in the existing integrated catchment model are an important factor to consider, and can 
include some or all of the following general types of model: 

• Rainfall-runoff models (gauged and ungauged catchments) 

• Flow routing models (hydrological and/or hydrodynamic) 

The appendices provide an overview of which data assimilation and conditioning methods are 
available for both generic types of model (e.g. rainfall-runoff) and specific model types (e.g. 
HBV-96, PDM, SAC-SMA etc). 

 

2.2.5 Operational Requirements 
 
Key Decisions 

Is a purely qualitative approach sufficient for generating ensembles ? 

Is data assimilation desirable or essential ? 

Is conditioning of forecast outputs required ? 

Key Steps 

For each Forecasting Point, assess the operational requirement  

Decide, at a catchment level, which is the most important Forecasting Point to consider 

The operational requirement describes the intended operational use of probabilistic forecasts 
in decision-making for flood warning and operational and emergency response.  

One key question to consider is whether a quantitative estimate of probability is required for 
input to the decision-making process, or whether a more visual, qualitative approach is 
envisaged.  

The degree of data assimilation and conditioning depends on this decision, as described in 
the appendices. 

2.2.6 Runtimes 
 
Key Decisions 

Are there run time issues for the candidate uncertainty estimation methods ? 

What are the options for reducing run times ? 

Key Steps 

Assess run times for the existing deterministic model 

Estimate run times required for ensemble forecasts 

Evaluate run time reduction options 
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Some probabilistic forecasting techniques can significantly increase the run times required for 
each model run, so that forecasts cannot be obtained within an operationally useful time.   

This is typically an issue for models which include a hydrodynamic component, and may be 
an issue for other types of models if large numbers of ensemble runs are envisaged.  

The appendices describe the main issues to consider for different types of models, and the 
main options for reducing run times. 

 

2.2.7 Performance Measures 
 
Key Decisions 

Are suitable performance measures already available to evaluate sources of uncertainty ? 

Which sources of uncertainty (and locations) are identified ? 

Key Steps 

Review previous studies, and ongoing operational assessments, of model performance 

Assess what this shows about the performance of individual models, data sources, forcing 
inputs etc. 

One of the most important steps in the forecasting process is forecast verification, since this 
determines how much a forecaster can trust/rely on the forecasting system when issuing a 
forecast.   

For an integrated catchment model, the performance measures at each forecasting point 
should provide a good indication of the locations in the catchment where the performance of 
individual components of the model is poor (and hence uncertainty is high), and also of some 
of the underlying causes of that uncertainty.   

However, it should be noted that usually only an estimate of overall uncertainty is provided, 
not of individual sources unless, for example, systematic testing has been performed of the 
effects of adding or removing model components or data streams, and of the sensitivity of 
outputs to key model parameters and data inputs. 

If this information is already available, this can supplement or replace some of the previous 
steps in the analysis. More information on performance measures is provided in Appendix A. 

 

2.3 Summary of Finding 
 

The uncertainty framework has been developed from a combination of a review of available 
techniques, findings from previous or related studies, and the expertise of the project team.  
Trials were performed for the coastal forecasting system in the Netherlands and the river 
forecasting system for the Rhine and Meuse (FEWS Rivieren).  
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3. FC2015 2009.06 & the Framework 

3.1 Introduction 
 
The project 2009.06 under the Flood Control program contains 11 sub-projects carried out by 
and together with the different partners. These projects are 

 
• 2009.06.01 Development Uncertainty Framework (Ontwikkeling van 

raamwerk voor kwantificeren en reduceren van onzekerheden; 
 
• 2009.06.02 Grid-based estimation precipitation amounts from 

combining Radar and Raingauges (Optimale schatting gevallen hoeveelheid 
neerslag per roostercel van 1x1 km, inclusief betrouwbaarheidsmarges); 

 
• 2009.06.02 Operationalising spatial dependencies and uncertainty in 

precipitation estimates (Operationaliseren van ruimtelijke afhankelijkheid en 
onzekerheid in neerslagmetingen); 

 
• 2009.06.04 Bayesian Model Calibration of Rainfall-Runoff models 

(Bayesiaans afregelmechanisme voor het identificeren en kwantificeren van 
onzekerheden in neerslag-afvoermodellen); 

 
• 2009.06.05 Uncertainty in Onzekere afvoerverdeling bij extreem 

hoogwater; 
 
• 2009.06.06 Uncertainty in flood scenarios and consequences 

(Onzekerheden in overstromingsscenario’s en gevolgen) ; 
 
• 2009.06.07 Uncertainty in Evacuation Modelling (Onzekerheid bij 

evacuaties); 
 
• 2009.06.08 Postprocessing of Hydrological Ensemble Forecasts 

(Postprocessing van probabilistische informatie over overstromingsrisico’s); 
 
• 2009.06.09 Operational River and Coastal Water Level Forecast using 

Bayesian Model Averaging (Bepalen conditionele kansen van 
stormvloedwaarschuwingen); 

 
• 2009.06.10 Operational uncertainty analysis of dike failure – piping and 

macro-instability (Operationele faalkansanalyse dijkringgebied tijdens 
hoogwatergolf); 

 
• 2009.06.11 Real-time data assimilation using spatially distributed 

hydrological models (Real-time data assimilatie in ruimtelijk gedistribueerde 
hydrologische modellen). 

 
These projects may be categorized under the framework to see where possible omission in 
the framework are and to determine to which strategy (operational or long-term) the different 
projects contribute. This is  shown below: 
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Development Framework   2009.06.01 
 
Operational Strategy 
 A-Condition Meteorological Forcing: - 
 B-Conditioning Initial State:   2009.06.11 
 C-Condition Model Parameters:  -       

D-Conditioning Forecasts :  2009.06.08 & 2009.06.09 (in DFCR) 
 
 Long-term Strategy 
 Model:      2009.06.04, 2009.06.05, 2009.06.10 
 Measurements:   2009.06.02&2009.06.03 
 
Flood Scenarios and Consequences and Uncertainty 
 Flood Scenarios:   2009.06.06 

Evacuations:    2009.06.07 
 
 
As can be seen above, uncertainty in Flood Scenarios and Flood Consequences has not 
been considered when constructing the framework, although operational Flood Scenarios and 
Flood Consequences forecasts might fall under C or D. This has been done because of time 
and budget constraints and may be considered in future Flood Control 2015 projects. 
 

3.2 Conclusions 
 
This report presents a first version of an overarching framework for assessing uncertainties in 
fluvial and coastal forecasting in a risk-based manner with the aim that it is robust enough to 
be considered for use in an operational environment. Two strategies to reduce and quantify 
uncertainties have been indentified: an operational strategy and a a long-term strategy. The 
operational strategy is focused an reduction and quantification of uncertainties in real-time. 
The long-term strategy is focused on structural improvements (models and measurements) 
that help to reduce (and quantify) uncertainties. 
 
This framework is supplemented by two case studies which will demonstrate how the 
framework can be used.  The framework needs further development and application (for 
instance for/to local water boards). In future versions uncertainty in prediction of flood 
scenarios and consequences should be considered.  
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A. Uncertainty Framework 

This appendix presents the technical background to development of the framework which is 
described in Chapter 2 of the main report, and to the methods which are recommended for 
selecting an appropriate uncertainty estimation approach.   

The main section headings follow the key factors introduced in Chapter 2 as follows: 

• Appendix A.1 - Level of Risk 

• Appendix A.2 - Lead-time Requirements  

• Appendix A.3 - Main Sources of Uncertainty 

• Appendix A.4 - Types of Models 

• Appendix A.5 - Operational Requirements 

• Appendix A.6 – Run Times 

• Appendix A.7 - Performance measures 

A.1 Level of Risk 
Many organisations are increasingly adopting a risk-based approach to decision-making, both 
for long-term planning and investment, and for shorter term operational decisions.  Risk is 
often defined as the combination of probability and consequence, sometimes also taking 
account of factors such as vulnerability and exposure.  One potential benefit of probabilistic 
forecasts is the ability to tailor flood warnings to the risk profile of the recipient (risk adverse, 
risk neutral etc), and the level of risk at which decisions are taken (e.g. to evacuate a town, 
raise a temporary barrier). 

For the purposes of this framework, a risk-based approach offers the possibility of using the 
level of risk as a guide to the choice of an appropriate uncertainty estimation technique.  For 
example, if the risk is low, less data hungry and computationally intensive approaches might 
be used, such as visualisation of outputs. However, if the risk is high, the decision might be 
made to use a state-of-the-art approach, investing in additional computer processing power 
and a hindcasting exercise for meteorological ensembles. 

Many different methods are used for calculating risk, ranging from look-up tables or charts to 
numerical assessments.  Methods need to be tailored to each situation; in particular taking 
account of the purpose of issuing a flood forecast, and the likely impacts if that forecast is 
incorrect. For example, in flood warning applications, the term ‘consequences’ can include the 
number of properties flooded, the economic damages, the number of lives lost, business 
disruption, and a range of intangible factors, such as the impacts on health and stress, and 
the loss of memorabilia and other personal items. 

When using an integrated catchment model, there is also the issue of whether risk should be 
assessed individually for each forecasting point in a catchment, or aggregated at a catchment 
level. If the model does not cover all areas at risk in a catchment, then that factor also needs 
to be considered.   

Since methods for addressing risk are so organisation-dependent, it is probably best to 
continue the discussion through the use of examples, as illustrated in Box A.1. 
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Box A.1 Risk-based Approaches used in the Netherlands 

The Dutch flood protection standards for coastal defences are among the most stringent in 
the world. These standards were set after the 1953 flood, which cost the lives of some 1800 
people in the Netherlands and 300 in the UK. The disaster put flood hazard on the political 
agenda and gave cause for extensive flood protection works in Zeeland and Zuid-Holland. 
The flood protection standards were developed in the late 1950’s and eventually led to the 
Flood Defences Act (“Wet op de Waterkering”, WWk (1995)). This Act states that the primary 
sea defences in the Netherlands should be able to withstand the maximum hydraulic load that 
is expected to occur at a probability of 1/1250 to 10,000 per year, depending on the area at 
risk (see Figure A.1).  

 
Figure A.1 Safety standards for primary flood defences in the Netherlands. 

The Flood Defences Act also demands that the flood are monitored every five years (2001, 
2006, 2011, etc.) for the required level of protection. This assessment is based on the 
Hydraulic Boundary Conditions (HBC) and the Safety Assessment Regulation (VTV: 
Voorschrift op Toetsen op Veiligheid). The HBC are derived every five years and approved by 
the Minister of Transport, Public Works and Water Management. 

The Safety Assessment Regulation (VTV) describes three levels of assessment: 

1. The basic assessment uses approximate models and rules of thumb. These 
assessment rules take conservative margins for simplifications or assumptions 
that were made to make the assessment feasible for non-experts. If a dike fails 
the basic assessment, a detailed assessment is usually the next step.  
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2. The detailed assessment generally uses the same models as in the basic 
assessment, but without making simplifications. This implies using more data and 
advanced numerical models. The assessment result can be positive, negative or 
undecided, in which case an advanced assessment is required.  

3.  The advanced assessment requires the involvement of experts on dike safety, 
who will perform specific research on the dike at stake. They will employ state-of-
the-art models and all available knowledge to come to a final judgement.   

Operational flood forecasting in the Netherlands is done separately for the coastal and fluvial 
systems. The Storm Surge Warning Service is responsible for sea level forecasting. If the 
forecast exceeds a critical level within the next 6 hours, the SVSD issues a warning to the 
dike and dam authorities and other bodies responsible for public safety. High tide levels are 
forecast by hydrodynamic models that are coupled to meteorological forecasts from KNMI. A 
Kalman filter is used to assimilate water level measurements along the British and Dutch 
coast. This reduces the uncertainty of the forecasts up to a 12-hour lead time (see Figure 
A.2).  

 
Figure A.2 Uncertainty (RMSE from observations) of the sea level forecasts at Hoek van 
Holland as a function of lead time. 

Water-level forecasts for the rivers Rhine and Meuse in the Netherlands are the responsibility 
of the Centre for Water Management of Rijkswaterstaat. The Centre for Water Management 
and Deltares have developed in the past decade, a so-called Flood Early Warning System for 
the Rhine and Meuse Rivers, called FEWS NL. FEWS NL is an advanced combination of 
hydrological and hydraulic models with software for import, validation, interpolation and 
presentation of data. Every 30 minutes the system receives observed water levels from about 
60 gauging stations in the Rhine basin. Every hour meteorological observations are 
downloaded from servers at the national Dutch (KNMI) and German (DWD) weather services 
of more than 600 stations in the basin of Rhine and Meuse. The system uses output from four 
numerical weather models at KNMI, DWD and the European Centre for Medium Range 
Weather Forecasts (ECMWF). 
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The large investments made in the coastal and fluvial forecasting systems are justified by the 
required accuracy for adequate flood warnings in both regions. Although the probability of 
flooding is very low, the consequences of a flood in a densely populated area such as the 
Netherlands are dramatic. Any measures that can be taken to reduce the losses depend on 
an accurate forecasting system. At the same time a false alarm is very costly. The cost for the 
1995 evacuation of 240,000 people from the threatened areas along the River Rhine and 
Meuse was estimated at 1 billion euros.  

 

A.2 Lead-time requirements 
The forecasting lead-time depends primarily on the lead-time requirement for flood warning, 
and may extend from as little as 1-2 hours to several days ahead. In the latter case, the 
shorter lead-time forecasts may be used in issuing the actual operational warning, while 
forecasts at the longer lead-time are used mainly as guidance in moving to a flood alert 
status, rather than to guide the issuing of a flood warning.  For example, for a large-scale 
flood event in a UK situation, given a week’s lead-time, the sequence of information actions 
might be (Golding 2009): 

• 3-5 days ahead: issue ‘advisory’ or ‘period of heightened risk’; engage in awareness 
raising activities through the media, mobilize support organisations for the vulnerable; 
initiate ‘participatory’ information sharing by local flood response organisations 

• 1-2 days ahead: issue ‘early warning’ or ‘watch’; activate mitigation measures for 
flood minimization and protection of critical infrastructure; provide active support to 
vulnerable groups; move to a consultative engagement with those in the most 
vulnerable areas 

• Hours ahead: issue ‘flood warning’; activate emergency response; evacuate most 
vulnerable groups if appropriate; provide ‘prescriptive’ advice to individuals 

Although the lead-times may differ between organisations, it is convenient in this framework 
to distinguish between two types of lead-time requirement: 

• Flood Warnings – the typical lead-time at which emergency response actions need to 
be taken 

• Outlook Statements – the lead-times at which forecasts are used to provide a general 
‘outlook’, ‘advisory’, ‘early warning’ or ‘watch’ 

In the absence of existing information on the key sources of uncertainty, such as from 
performance measures (see later), the lead-time requirement is a key factor in deciding on 
the most appropriate uncertainty estimation technique(s) to use.  A comparison with the 
catchment response time then indicates whether sufficient lead-time can be obtained using 
catchment observations (e.g. river flows, raingauges) or rainfall forecasts are required as 
inputs. 

This balance between lead-time requirements and catchment response time can be 
formalised by using a development of a simple classification scheme for flood forecasting 
originally developed by Lettenmaier and Wood (1993). 

Considering first a single forecasting point in a catchment, the adapted classification scheme 
compares the desired warning time (Twarning) to the total response time (Ttotal) at the location 
for which the forecast is to be provided. This response time is further subdivided into the 
hydraulic response time (travel time through main river, Triver) and the hydrological response 
time (which is less than the response time of the catchment, Tcatchment).  
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An additional lead-time (Tsurge) is also applicable for coastal forecasting situations (although 
coastal forecasting is outside the scope of the present study). This division is somewhat 
arbitrary but generally the river channel is considered to be the main river (system), whilst the 
hydrological response is the response of sub-catchments before water flows into the main 
river system.   

The situations in Table A.1 are defined, and these general categories are illustrated in Figure 
A.3, and indicate the types of forcing inputs which may be required at each forecasting point 
in the catchment. For example, for Type 1 situations, rainfall forecasts are essential and, if 
conditioning of outputs is used, this would require an archive of forecast values (perhaps 
obtained using a hindcasting exercise). For catchments with multiple forecasting points, then 
each point needs to be considered in turn and the forcing inputs assessed. 

Table A.1 Links between lead-time requirements and catchment response (adapted from Lettenmaier and Wood 
1993) 

Type Catchmen
t 

Criterion Description and key forcing inputs for flood 
warnings 

1 very fast  
responding 
basins 

Twarning>>Ttotal The desired lead-time is such that the warning or 
outlook must be issued on the basis of water that 
has not yet fallen as rain. In this case a rainfall 
forecast is the only means to provide a timely 
warning when using a flood forecasting model 

2 small to 
medium  
basins 

Twarning <Ttotal & 
Tcatchment>>Triver.

The warning or outlook will be issued on the basis 
of water that is already in the catchment and is 
mainly determined by the hydrological travel time. 
This may be the case for point I in Figure A.2. 

3 medium 
size basins 

Twarning<Ttotal & 
Tcatchment~Triver 

The warning or outlook will be issued on the basis 
of water that is already in the catchment and river 
and the response time is determined by the 
hydrological response time and the hydraulic 
response time. This may be the case for forecast 
point IV in Figure A.2. 

4 large river 
basin 

Twarning<Triver or 
Tcatchment<<Triver 

The warning or outlook will be issued on the basis 
of water that is already in the main channel; or the 
hydrological response time is insignificant 
compared to the hydraulic response time. This 
may be the case for the forecast point VII in Figure 
A.2, assuming catchments E and F have only 
minor contributions. 

5 coastal / 
tidal zone 

Twarning>>Tsurge The desired lead-time is such that the warning or 
outlook may be issued on the basis of wind 
conditions that have not yet occurred. In this case 
wind and pressure forecasts are necessary for a 
timely warning.  
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Figure A.3 Schematic layout of a catchment, including the main river, tributaries and catchments (adapted from 

Lettenmaier and Wood 1993) 
 
In estimating the actual time available, an allowance also needs to be made for the various 
time delays in the decision-making and warning process, which can include (Environment 
Agency 2002): 

• The time taken for information to be received by telemetry 

• The time taken for a routine real-time model run 

• The time taken for flood forecasting and warning staff to decide to act upon a forecast 
of levels exceeding a Flood Warning trigger level (e.g. whilst performing ‘what if’ runs) 

• The time taken for all properties to be warned (e.g. via an automated dialling system. 

A.3 Main sources of Uncertainty 
If information is not already available from previous studies (e.g. performance measures) an 
initial assessment of the main sources of uncertainty can be performed using the catchments 
types (Types 1 to 5) defined in Table A.1. Table A.2 illustrates some key sources of 
uncertainty which are typical for flood warnings and outlook statements.   

In the table, the focus is on the primary sources of errors, rather than derived variables such 
as antecedent conditions (which are typically obtained from an initial state, and observed 
areal mean rainfall, potential evaporation and flows in the historical mode of operation). 

Note that, for very fast responding catchments, with current meteorological forecasting 
performance, rainfall forecasts are likely to be the most significant source of uncertainty of 
those listed.  Also, as noted earlier, the key sources of uncertainty are likely to be different for 
flood warnings and outlook statements. 
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Table A.2 Dominating uncertainties for each forecasting situation 
Type Catchment Source 

1 very fast 
responding 
basins 

Initialisation Errors:  
-Past Areal Mean Rainfall 
-Potential Evaporation 
Modelling Errors: 
-Rainfall-Runoff Model Parameters 
-Rainfall-Runoff Model Structure 
Forcing Errors: 
-Rainfall Forecasts 

2 small size 
basins 

Initialization Errors:  
- Past Area Mean Rainfall 
-Potential Evaporation 
Modelling Errors: 
-Rainfall-Runoff Model Parameters 
-Rainfall-Runoff Model Structure 
Forcing Errors: 
-Rainfall Forecasts (for longer lead-times/outlook statements) 

3 medium 
size basins 

A mixture/combination of 2&4 

4 large river 
basins 

Initialisation Errors:  
-High Flow Ratings 
-Ungauged Lateral Inflows 
-Tidal Boundary 
Modelling Errors: 
-Hydraulic/Routing Model Parameters 
-River Channel/Floodplain Survey 
-River Control Structures 
Forcing Errors: 
-High Flow Ratings (forecast inflows) 
-Forecast Tidal Boundary 
-Forecast Lateral and other Inflows (for longer lead-times/outlook 
statements) 
-Rainfall Forecast (for even longer lead-times/outlook statements) 

5 coastal/tidal 
zone 

Initialisation Errors:  
-Water levels in the coastal zone 
Modelling Errors: 
-Bathymetry 
-Model domain/resolution 
Forcing Errors: 
-High Flow Ratings (forecast inflows/levels) 
-Boundary Conditions 
-Wind and Pressure Forecast 
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A number of catchment-related complicating factors can also influence the choice of an 
uncertainty estimation approach, and can include some or all of the following items: 

• Permeable catchments – runoff response may normally be minor, but major flows 
generated once saturated conditions are reached 

• Groundwater influences – runoff response may vary with groundwater levels, and 
groundwater flooding may need to be considered 

• Urban influences – a number of factors may influence response (e.g. drainage 
networks, flood detention basins) 

• Snowmelt – additional runoff may occur from melting snow, requiring a snowmelt 
modelling component 

• Embanked floodplains – water may be lost to the river network permanently, or return 
some time later via drainage paths 

• Reservoirs, lakes and wetlands – flow modifications/attenuation may occur due to 
storage effects and/or gate operations 

• Flow Control Structures – flows may be influenced by structure operations at gates, 
barriers etc. 

• Off-line storage, abstractions, discharges and diversions – influences may occur from 
washland operations, pumps, flood relief channels etc. 

• Event specific problems – issues may occur with channel blockage due to debris, 
defence breaches, dam breaches etc. 

If any of these components are present, the key sources of uncertainty may also need to be 
assessed for these model components as illustrated in Table A.3.  Again, the focus is on 
primary sources of error, rather than observed or calculated values such as reservoir levels: 
 
Table A.3 Some typical additional sources of uncertainty from complicating factors 
Complicating 
Factor 

Initialisation Errors Modelling Errors Forcing Errors 

Permeable 
catchments  

 Groundwater/soil moisture 
store parameters 
Model Structure 

 

Groundwater 
influences 

 Groundwater store parameters 
Model Structure 

 

Urban 
influences 

 Surface Runoff Parameters  

Snowmelt Past Precipitation Snow Store Parameters; 
Model Structure 

Precipitation 
Forecasts 

Embanked 
floodplains 

Past Floodplain 
Drainage 

Flood Defence and 
Embankment Survey/Flow 
Paths; Model Structure 

Forecast 
Floodplain 
Drainage 

Reservoirs, 
lakes and 
wetlands  

Past Ungauged 
Inflows; Past Open 
Water Evaporation 

Stage-Volume Survey; 
Release Rules; Model 
Structure 

Forecast 
Ungauged Inflows 

Flow Control 
Structures 

Past Structure 
Settings (gates etc) 

Control/Logical Rules; Model 
Structure 

Forecast Structure 
Settings (gates 
etc) 

Off-line storage, 
abstractions, 
discharges and 
diversions  

Past Abstractions, 
Discharges and 
Diversions 

Outflow Relationships; 
Operating Rules; Model 
Structure 
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Event specific 
problems  

 Representation of Blockage, 
Breach etc; Model Structure 

 

 

A.4 Types of Model 
When considering which sources of uncertainty to consider, the types of models used in the 
existing integrated catchment model are an important factor to consider, and can include 
some or all of the following general types of model: 

• Rainfall-runoff models (gauged and ungauged catchments) 

• Flow routing models (hydrological and/or hydrodynamic 

The sources of uncertainty are generally specific to each type of model used by an 
organisation. 

A.5 Operational Requirements 
The operational requirement describes the intended operational use of probabilistic forecasts 
in decision-making for flood warning and operational and emergency response. 

One key question to consider is whether a quantitative estimate of probability is required for 
input to the decision-making process, or whether a more visual, qualitative approach is 
envisaged. 

For example, the following techniques have been used in meteorology and application areas 
for interpretation of the outputs from ensemble forecasts: 

A. Visualisation – ‘eyeball’ assessments of the spread of ensemble members with 
forecast lead-time, and relative to threshold values, and of other factors such 
as the clustering of ensembles 

B. Persistence-based approaches – which compare the number of threshold 
exceedances between successive model runs 

C. Threshold-frequency approaches – calibration of thresholds based on the historical 
model performance, obtained over a calibration period (e.g. based on flow 
return periods) 

D. Physical-threshold approaches – as for threshold-frequency approaches but using 
actual threshold values in decision-making (e.g. flood defence levels) 

E. Cost-loss approaches – assessment of appropriate actions based on consideration of 
the economic value or utility of forecasts, and the optimum probability 
thresholds for taking action 

F. Bayesian Uncertainty Processors (whole-system versions) – similar to cost-loss 
approaches, considering the predictive uncertainty taking account of all 
information available up to the time of the forecast, and including economic 
and subjective views of flood warning decision criteria 

The probabilistic content for Types A and B might be classed as qualitative, Type C as 
indicative/qualitative, and Types D to F as quantitative. 

Although it is difficult to generalise, the requirement for the probabilistic content of forecasts 
increases moving from Type 1 to Type 6.  Also, for any given type, the data requirements for 
low probability-high impact events are higher, requiring either long runs of historical data to 
calibrate methods, and/or stochastic or other simulation of data to extend record lengths. 
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A.6 Run Times 
Some probabilistic forecasting techniques can significantly increase the run times required for 
each model run, so that forecasts cannot be obtained within an operationally useful time.  
This is typically an issue for models which include a hydrodynamic component, and may be 
an issue for other types of models if large numbers of ensemble runs are envisaged.  Some 
options for reducing run times include: 

• Computational Improvements – e.g. parallel processing, faster processors 

• Model Configuration changes – e.g. nested models, model simplification or 
rationalisation 

• Statistical Approaches – e.g. sampling or grouping of ensembles 

• Model Emulators – e.g. simpler models to emulate the behaviour of more complex 
models 

For any given integrated catchment model, the options which can be used depend on a 
number of factors, including the type of model, existing run times, and the catchment and 
local response (e.g. influence of structures).  Also, some options, such as faster processors, 
typically require an investment at organisational level, so are not always an option when 
considering an individual catchment model. 

For hydrodynamic models, the main options for reducing run times include rationalisation and 
simplification, parallel processing, and the use of emulators.  Some studies have shown (e.g. 
Chen et al. 2005) that even for complex models run time reductions of one or two orders of 
magnitude (10-100) are often possible without sacrificing model performance at forecasting 
points.   

Emulators also provide an attractive option, particularly if real-time inundation mapping is 
envisaged (e.g. Young et al. 2009).  The run time requirement for this approach is minimal. 

A.7 Performance Measures 
Performance measures may be also be used as a guide to the main sources of uncertainty 
and may be available for both deterministic and probabilistic forecasts. For example, for 
probabilistic forecasts, the methods which are used to quantify the uncertainties include the 
reliability, skill and resolution of forecasts. Many of these techniques have been developed 
within the atmospheric sciences (e.g. Wilks 2006; Jolliffe and Stephenson 2003), but are 
often equally applicable to other disciplines, such as the hydrological sciences. 

A distinction can also be made between real-time and historical verification, where historical 
verification is used to assess the performance of the forecasting system; for example, by 
looking at different attributes of the forecasts, such as reliability, skill, resolution, 
discrimination, etc., to diagnose the performance of the forecasting system so that cost-
effective improvements may be made. Of course it is also possible to perform a trend analysis 
to assess improvement in forecast quality over time.  

Methods for verification of deterministic forecasts are well established (e.g. Jones et al. 2003, 
2004; Werner and Self 2005; Wilks 2006), and provide clear insights into value and skill of 
predictions at different lead-times, giving valuable information to the forecaster in interpreting 
forecast products. 

Recently, more attention has been paid to the verification of ensemble forecasts (Roulin and 
Vannitsem, 2005; Laio and Tamea 2008, Renner et al., 2009; CEH Wallingford 2009). 
However note that the records of ensemble forecasts are often limited and that therefore 
verification statistics are difficult to determine without recourse to a hindcasting or 
reforecasting exercise. This is in principle straightforward for a river forecasting model, but 
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can be a considerable undertaking for a meteorological forecasting model (e.g. Uppala et al. 
2006).   

To assess the quality of probabilistic hydrological forecasts, several verification techniques 
can be applied. Methods typically assess the reliability of forecasts in representing historical 
probability distributions (median, spread, moments etc.), the long-term forecasting success 
relative to thresholds, such as skill scores, and the information content of forecasts, such as 
the proximity to a yes/no response (e.g. the sharpness).  As with deterministic forecasts, 
measures can be presented for different forecast lead-times, with and without the use of data 
assimilation. 

For example, reliability can be assessed through reliability diagrams or attribute diagrams. 
These diagrams measure the agreement between predicted probabilities and observed 
frequencies. If the forecast is reliable then, over the long-term, whenever the forecast 
probability of an event occurring is P, that event should occur a fraction P of the time. 

Skill measures for assessing ensemble forecasts include the Brier Score, which measures the 
mean squared error in the probability space, and the Brier Skill Score (BSS) measures skill 
relative to a reference forecast (usually the climatological or naïve forecast).  

The Ranked Probability Score (RPS) is another way of determining the accuracy of the 
probabilistic forecast. RPS measures the squared difference in probability space when there 
are multiple categories (when there are only two categories, the RPS is equal to the BS). As 
with the Brier Skill Score, the Ranked Probability Skill score measures skill relative to a 
reference forecast, and applies when there is a discrete number of categories, but can be 
extended to continuous categories as the Continuous Ranked Probability Score (CRPS). 
CRPS is particularly attractive in that it does not depend on the particular choice of thresholds 
and that it allows comparative verification with single-value forecasts, for which CRPS 
reduces to the absolute mean error.   

The Relative Operation Characteristic (ROC) is a measure to assess the ability of the forecast 
to discriminate between events and non-events. The ROC curve plots the hit rate (POD) 
against the false alarm rate (POFD), which differs from the False Alarm Ratio (FAR). The 
curve is created using increasing probability thresholds to make the yes/no decision. 

As with performance measures for deterministic forecasts, probabilistic measures provide 
information on different aspects of forecast performance, and are often used in combination 
to assess the performance of a forecasting model.   
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B Applying the Framework for the SVSD 

This appendix presents the main results from application of the uncertainty framework to the 
forecasting models of the Storm Surge Warning Service (Dutch: Stormvloed-
waarschuwingsdienst, SVSD).  The descriptions are presented as follows: 

• Appendix B.1 – Introduction  

• Appendix B.2 – Application of the Uncertainty Framework 

 

B.1 Introduction 

B1.1 SVSD 
The Storm Surge Warning Service is responsible for timely notification of the dike and dam 
authorities and other bodies responsible for public safety in case of a storm surge hazard. 
During the storm season the SVSD keeps a meticulous watch on meteorological 
developments and coastal tide conditions, particularly if the wind direction is between south- 
westerly and northerly. High tide levels are forecast by hydrodynamic models that are coupled 
to meteorological forecasts from the Royal Netherlands Meteorological Institute (KNMI). If the 
forecast exceeds a critical level, the SVSD issues advance warnings to the relevant 
authorities.  

There are three critical water levels. The 'pre- warning' level will call for dam authorities to 
take very limited precautions. The second ‘warning’ level will trigger some further measures. 
The third and highest ‘alarm’ level will call for drastic precautions, such as continuous 
monitoring of the dike status. The pre-warning, warning or alarm is issued 6 hours in advance 
of the expected time of exceedance. Currently, the SVSD is investigating if this can be 
increased to 12 hours in advance.  

Because the timing of high tides varies from one place to another and because a gale will 
seldom affect the whole coastline with equal force, the coastal region is divided into sectors. 
In each sector, there is a reference monitoring station and each sector has different critical 
water levels as shown in Table B.1. 

Table B.1 Sectors and critical water levels 

Sector   Schelde West-
Holland 

Dordrecht Den 
Helder 

Harlingen Delfzijl 

Reference 
station  

Vlissingen Hook of 
Holland 

Dordrecht Den 
Helder 

Harlingen Delfzijl 

Pre-warning 
level   

310 200    260 

Warning 
level   

330 220  190 270 300 

Alarm level   370 280 250 260 330 380 
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The procedure for issuing warnings and alarms to the various sectors is as follows:  

Every day the Hydro Meteo Centre in Hook of Holland (an auxiliary office of the KNMI) 
produces tidal rise forecasts. The SVSD is notified when the high tide at any reference station 
is expected to exceed the "information level" (which is as much as 40 to 50 cm below the 
warning level). This message is generally issued about ten hours before the water is likely 
actually to reach that level.  

Based on the information supplied and experience, the SVSD officer on duty (a tidal 
hydrologist) - will decide whether or not it is expedient to fully staff the SVSD command 
centre. If the warning level is expected to be exceeded in one or more sectors, the SVSD will 
issue warnings and/ or alarms. Wherever possible, this will be done at least 6 hours in 
advance of high tide, so that the dike and dam authorities have time to prepare. These 
warnings will be issued to a number of bodies concerned with the safety of the coastal 
provinces, including:  

• water boards and dike and dam authorities  

• Rijkswaterstaat field services  

• the provincial public works authorities  

• the Ministry of the Interior (Fire Service and Disaster Response Department).  

As soon as an alarm is issued, announcements are also broadcast on radio and TV news 
bulletins.  

 

 
Figure B.1 Information flow of the SVSD (courtesy of SVSD) 
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When a dike watch is advised (alarm level), the dike authorities will call up personnel and 
recruit local volunteers to form dike teams. The central security station is staffed and 
sandbags are filled and loaded onto lorries. The sea dikes are patrolled by people carrying 
mobile phones. Fire brigades and police services are put on full alert. Army and navy 
commanders confine their personnel to barracks or to their ships. Dike cuttings - places 
where the dikes are crossed by roads and railway lines - are sealed off. Mayors and chief 
police officers are notified in the municipalities concerned. They take measures to ensure law 
and order. The public is informed by the national press agency (ANP), which spreads the 
information via radio and TV. 

B.1.2 DCSM model 
The WAQUA - DCSM98 storm surge model is a numerical model of the shallow water 
equations applied to the Northwest European Continental Shelf (see Figure G.2). DCSM was 
developed by Rijkswaterstaat, Deltares, and KNMI. The model is run several times a day, to 
calculate sea levels and the depth averaged currents on a grid with cells of approximately 8 
by 8 km, using as input the wind and pressure forecasts from the KNMI limited area model 
HIRLAM.  

 
Figure B.2 Bathymetry and outline of the WAQUA-DCSM model (courtesy of KNMI) 
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Deterministic sea level forecasts for up to 48 hours ahead are produced four times per 
day. A Kalman filter is used for data assimilation of recent sea level observations. In 
particular for sea levels along the British and Dutch coasts this gives a significant 
improvement of the accuracy at short lead times. This benefits the decision support for 
the dynamic storm surge barriers in the Oosterschelde and the Rotterdam Waterway 
(Maeslantkering).   
 
The standard deviation of the sea level forecasts for up to 48 hours is generally less than 
15 cm along the Dutch and British coasts. For lead times of less than 12 hours, the 
Kalman filter typically brings this down to less than 10 cm. For extreme surges, the 
forecast accuracy is hard to evaluate, because these events are rare. 
 

B.2 Applying the Uncertainty Framework  
Following the uncertainty framework, the following key factors will be considered (see 
Chapter 2 of the main report): 

• Level of Risk 

• Lead Time Requirements 

• Types of Model  

• Main Sources of Uncertainty 

• Operational Requirements 

• Run Times 

• Performance Measures 

A worksheet has been developed to assist in this process and a completed version for the 
SVSD is attached to the end of this description. The following sections describe the analysis 
and decision making process which contributed to completing this worksheet. The coastal 
system is of Type 5. 

B.2.1 Level of Risk 
The protection standards for sea defences vary along the Dutch coast, between 1/10,000 per 
year for the coast of West-Holland to 1/2000 per year for Dordrecht. Table A.2 displays the 
protection standards and corresponding water levels for the reference locations to the SVSD 
sectors. The standards are well below the SVSD alarm levels, except for location Dordrecht 
(alarm level 2.5 m+NAP). 

Table B.2 Protection standards for dike rings corresponding to the SVSD sectors 
Sector   Protection standard Water level 

Schelde 1/4000 5.3 m+NAP 

West-Holland 1/10,000 5.1 m+NAP 

Dordrecht 1/2000 3.0 m+NAP 

Den Helder 1/10,000 5.7 m+NAP 

Harlingen 1/4000 4.9 m+NAP 

Delfzijl 1/4000 6.0 m+NAP 
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The protection standards are relatively high, at least compared to fluvial standards and 
other countries. This is justified by the scale of the consequences should a flooding by a 
storm surge occur. The potential for enormous damage and a high number of casualties 
demands an extremely low flooding probability in order to keep the risk (probability x 
consequences) at a reasonable level.  

B.2.2 Lead Time Requirements 
The current lead time of the SVSD warnings and alarms before the expected critical level 
exceedance is 6 hours. The SVSD is currently investigating how this can be increased to, if 
possible, 12 hours. This lead time is sufficient for the tasks of the SVSD service, namely 
calling for operation of the storm surge barriers, organising a dike watch and sealing off dike 
cuttings. Fire brigades, police services and the army can also be alerted in time.  

However, a warning lead time of 12 hours is by a long way not sufficient to organize an 
evacuation of the densely populated coastal regions. An organized evacuation of a coastal 
dike ring at risk requires multiple days. An accurate surge forecast several days ahead is 
currently not feasible, mainly due to the uncertainty of the meteorological forecast (wind and 
pressure) for longer lead times.  

B.2.3 Main Sources of Uncertainty 
For a Type 5 system, the main sources of uncertainty are listed in Table B.3, together with a 
summary of the likely importance for the Dutch coastal region. 

The meteorological input for the storm surge model is the main source of uncertainty for 
the storm surge forecasts. The uncertainty originates from errors in the position and 
intensity of depressions. Small-scale intense phenomena also play an important role. 
Local wind gusts can affect the water level considerably at specific locations.  
 
Predictability of such phenomena is intrinsically limited. Near the coast, the influence of 
topography on the wind over the sea should be taken into account. 
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Table B.3 Initial analysis of likely sources of uncertainty 
Type Source Importance for DCSM 
Initialisation 
Errors 

Water levels The initial water levels (and currents) over the entire 
model domain are an important source of uncertainty, 
although this is partly corrected for by the Kalman 
filter. 

Bathymetry The bottom topography and roughness coefficient are 
sources of uncertainty in the DCSM model. The 
roughness coefficient is a constant whose value is 
usually determined in the calibration, because it 
cannot be measured directly.  

Grid resolution The accuracy of storm surge forecasts is also limited 
by the accuracy of the storm surge model itself. 
Although the model was calibrated extensively, the 
limited resolution is still a source of uncertainty, 
especially near the coast. The model grid resolution of 
DCSM8 is approximately 8 km in each dimension. A 
former version of the model (DCSM16) used a 16 km 
grid.  

Model 
Errors 

Surface 
roughness 

The surface roughness or wind drag coefficient is a 
source of uncertainty that affects the wind setup. A 
Charnock-type wind-drag relation is used, but there 
are indications that this formulation is no longer 
correct for extreme wind speeds. 

Wind and 
pressure forecast 

The most important source of uncertainty for the 
WAQUA/DCSM model is the wind forcing by 
meteorological forecasts. The increasing uncertainty 
of the wind forcing for longer lead times is the main 
reason for the limitations to the accuracy of the 
hydrodynamic model.  

Astronomical tide  The simulation of the astronomical tide suffers from 
uncertainty. This is corrected for by taking the 
difference between a simulation that includes wind 
forcing and a second run for only the astronomical 
tide. This way, most of the error in the astronomical 
tide cancels out. The effect on forecasts of high 
surges is therefore limited, but it does enter into the 
assimilation process of observed water levels. 

Forcing 
Errors 

Boundary 
conditions 

The boundary conditions for the forecasting model are 
located at distant deep water locations. Nevertheless, 
these boundary conditions are based on purely 
astronomical tide. The influence of wind outside the 
model domain is thus neglected.  
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B.2.4 Types of Models 
The WAQUA/DCSM is a semi-implicit numerical model of the 2D shallow water equations, 
which are solved on a regular grid (spherical coordinates). A steady state Kalman filter is 
applied to assimilate recent water level measurements. Filtering locations are obtained form 
Wick, North Shields, Lowestoft, Southend, Vlissingen, Hoek van Holland, IJmuiden and Den 
Helder. The meteorological forcing is derived from the KNMI limited area model HIRLAM7.2. 

The uncertainty framework shows that the following techniques are potentially available to 
provide uncertainty information for this type of system:  

Table B.4 Summary of approaches potentially available to provide uncertainties 
Name Data 

Assimilation 
(internal) 

Data 
Assimilation 
(external 
options) 

Parameter/state 
exchange 

Kalman Filter WAQUA-KF  Native text files 
Bayesian Model 
Averaging 

 NOOS  

Ensemble Prediction 
System (EPS) 

 EMCWF-EPS  

 

A solution to deal with the uncertainty in meteorological input is the use of ensemble 
forecasts. These provide information about the range of possible realizations, and, if 
applied to the storm surge model, also for the water levels. For small scale phenomena 
ensemble runs can be useful for assessing different possible scenarios.  
 
Other countries surrounding the North Sea use similar although not identical models for 
operational water level forecasting. These models use different meteorological inputs. The 
forecasts are exchanged on an online FTP server and made available using an application 
called MATROOS. The different model forecasts can be employed as a poor man’s ensemble 
in a multi-model approach.  

B.2.5 Operational Requirements 
The SVSD storm surge warning service is currently based on the deterministic 
WAQUA/DCSM-8 model forecast and on the practical experience of the SVSD staff.  

Most research efforts in recent years have focused on improving the accuracy of the 
deterministic forecast as much as possible. The current uncertainty for the 48 hour forecast of 
10 to 15 cm is considered acceptable.  

No probabilistic or uncertainty information is included in the decision whether or not to issue a 
warning. However, there is an interest in such information, particularly for longer lead times.  

B.2.6 Run Times 
The computing time for a 48 hour forecast of WAQUA/CSM-8 model is about 2 hours on a 
standard PC. The operational forecasting for the SVSD is done at KNMI using non-standard 
hardware. Uncertainty information based on an ensemble or multi-model approach can only 
be done using parallel computing, in order to produce practically useable results for the 
warning service.  

B.2.7 Performance Measures 
Commonly used performance measures are the RMSE and bias. An example of an RMSE 
output for the high tide at Hoek van Holland is shown below.  
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Figure B.3 RMSE of the WAQUA/DCSM-8 model forecast for high tide at Hoek van Holland with and without 

Kalman filtering. Different lead times up to 48 hours 

B.2.8 Choice of Methods 
Having considered the various key factors, the final stage in the analysis is to select the most 
appropriate uncertainty reduction and uncertainty estimation techniques for the SVSD 
forecasting system.  Table B.5 provides an overall summary of the results from this analysis. 
Table B.6 presents the completed worksheet for this case study.  

Data assimilation (Kalman Filter) is already employed and has proven to yield a valuable 
uncertainty reduction for short lead times (0-12 hours). For lead times around 24 hours, 
however, the Kalman Filter actually increases the uncertainty. This is due to a delayed 
response of the model to the adjustments made by the Kalman Filter.  

Two approaches are recommended to produce uncertainty information for different lead 
times:  

• For short lead times, the ensemble of forecasts from the NOOS community 
(hydrodynamic models similar to WAQUA/DCSM-8, but largely fed by 
different meteorological forcing), can be employed in a multi-model approach 
called Bayesian Model Averaging (BMA). This technique has been 
implemented on the forecast-exchange server MATROOS. Below is a 
screenshot from that system, showing the confidence interval for the 
probabilistic forecast. Since most of the NOOS forecasts are issued for 
relatively short lead times (2 days), this approach will work best for these 
short lead times.  
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Figure B.4 Probabilistic water level forecasts, based on the BMA-NOOS 

 
• For longer lead times, the meteorological forcing is by far the dominant source of 

uncertainty. This uncertainty is captured by ensemble runs of the ECMWF 
meteorological model. The 51 members of the ECNWF-EPS can be used as input to 
51 hydrological model runs. The figure below shows an example of the results. The 
EPS requires calibration, because it is over-dispersed. The calibration of the 
probabilistic forecast can be done using historical forecasts and observations. 
Furthermore, the ECMWF-EPS is known to underestimate the uncertainty of the 
meteorology for short lead times (up to 2 days). Therefore this approach is most 
appropriate for longer lead times. 

 
Figure B.5 Probabilistic water level forecasts, based on the ECMWF-EPS 
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Table B.5 Summary of Application of the Uncertainty Framework to the SVSD 
Catchment North Sea  
Forecasting 
Points 

Hoek van Holland  

Model Type Type 5  
Model(s) WAQUA/DCSM-8  
 Flood Warning Outlook Statements 
Level of 
Service 
Requirement 

6 - 12 hours  None  

Initialisation Errors:  
Water levels  

Initialisation Errors: 
-  

Modelling Errors:  
Grid resolution  

Modelling Errors: 
- 

Main 
Uncertainties 

Forcing Errors:  
Meteorological forecasts (wind and 
pressure) 

Forcing Errors: 
Meteorological forecasts (wind and 
pressure) 

Quantification 
of 
uncertainties 

Multi-model approach, such as 
BMA, on the NOOS models.  

ECMWF Ensemble Prediction 
System. 

Reduction of 
uncertainties 

Kalman Filter  - 
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C Applying the Framework for FEWS Rivieren Rhine & 
Meuse 

This appendix presents the results from the uncertainty framework case study to the 
operational forecasting system for the Lobith Rhine location on the Dutch-German border. 
The case study is presented in two parts: 

• Part D.1 – Description of the FEWS RIVIEREN system 

• Part D.2 – Application of the Uncertainty Framework 

C.1 Lobith and FEWS Rivieren 

C.1.1 River forecasting in the Netherlands 

Reliable water-level forecasts for the Dutch rivers are of great importance for operational 
water management. About one quarter of the Netherlands lies below sea level and more 
than 60% of the country is potentially threatened by high water levels at sea and floods 
from the rivers. The endangered area along the Rhine river is extremely densely 
populated and is of significant economic and historic value. More than half of the Dutch 
population lives and works in this part of the country; the harbors of Rotterdam and the 
national airport Schiphol are located here. The potential economic damage of a flood in 
this area is roughly estimated at 1,200 billion Euro.  

The accepted risk of an inundation in such an area is low. At the same time extreme 
events are expected to occur more frequently and in a more severe extent as a result of 
soil subsidence as well as climate-change induced extreme weather conditions and sea-
level rise. One approach to reducing the risks and to limit the consequences of these 
increasing threats is through the development of improved operational warning systems.  

Lobith is the location where the Rhine enters the Netherlands. Although in reality, this 
happens about 4 km further upstream, near Spijk, Lobith has always been a reference 
location for hydrologic studies of the lower Rhine branches in the Netherlands. For 
example, the dikes of the lower Rhine branches (see Figure C.1) are designed to 
withstand a design discharge at Lobith having an exceedance probability of 1/1250 per 
year.  
 
Lobith discharges are forecast using hydrologic (HBV) and hydraulic models (SOBEK) 
and a statistical model, called LobithW. Until the late 1990’s, the statistical model was the 
only operational forecasting model for the lower Rhine branches that was used by the 
Dutch water authorities. LobithW consists of several sub-models and uses statistical 
correlations between water levels, discharges and rainfall at upstream gauging stations. 
To take into account some of the nonlinearity of the system, the sub-models are split into 
high and low water level regimes.  
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 Figure C.1 Rhine branches in The Netherlands 
 
After the 1993 and 1995 floods of the Meuse and Rhine Rivers in the Netherlands the 
need for forecasts with a longer lead time became clear. The limited time that was 
available for the large scale evacuations during the 1995 flood was seen as highly 
undesirable. In order to increase the lead time for Lobith use was made of a hydraulic 
model and rainfall-runoff models for the tributaries.  

Water-level forecasts for the rivers Rhine and Meuse in the Netherlands are the 
responsibility of the Centre for Water Management (formerly RIZA) of Rijkswaterstaat. 
Under normal circumstances these forecasts are made every morning on a daily basis 
(365 days a year), mainly for navigation on the Rhine. During floods the frequency of 
forecasts is increased to at least twice a day.  

 
  Figure C.2 1995 Flooding of the lower Rhine branches 
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C.1.2 FEWS Rivieren Rhine & Meuse 

Until the late nineties only a relatively simple computer model, called LobithW, was used 
to forecast the water level of the Rhine. This model is based on knowledge and arithmetic 
principles from the fifties and calculates the water level at the gauging station Lobith near 
the German-Dutch border on the basis of statistical relations with a number of reference 
points. The model produces a forecast of the water level at the German-Dutch border 
with a lead time of four days. Experience shows that only the first two days are reliable. 
During the last big floods in 1993 and 1995 it was shown that the preparation time for the 
evacuation of a larger area should be at least 2 ½ to 3 days. The existing forecasting 
system was not able to produce a reliable forecast for this lead time.  

In the period after 1998 river-stage forecasting went through a spectacular development, 
not only regarding computer models, but especially in the field of available data. Because 
of the immense increase in available data and the developments in the field of IT 
(internet, data transmission, faster computers) it became possible to use more advanced 
physical models in operational mode. The Centre for Water Management and Deltares 
have developed in the past decade, in cooperation with sister organizations in 
Switzerland and Germany, a so-called Flood Early Warning System (FEWS). An 
operational version of this system for the Rhine and Meuse Rivers, called FEWS 
Rivieren, has been installed in 2008 (see  Figure C.3 ). 

 

 Figure C.3 FEWS RIVIEREN screendump 
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FEWS Rivieren is an advanced combination of hydrological and hydraulic models with 
software for import, validation, interpolation and presentation of data. In comparison to the 
former statistical model FEWS Rivieren uses significantly more data as input. Every 30 
minutes the system receives observed water levels from about 60 gauging stations in the 
Rhine basin. Every hour meteorological observations are downloaded from servers at the 
national Dutch (KNMI) and German (DWD) weather services of more than 600 stations in the 
basin of Rhine and Meuse. The system uses output from four numerical weather models at 
KNMI, DWD and the European Centre for Medium Range Weather Forecasts (ECMWF).  

This extreme increase of available data has great advantages but also creates new 
challenges. In addition to weather forecasts from four deterministic models, the Centre for 
Water Management also receives ensemble weather predictions from the ECMWF. The 
ECMWF global ensemble produces 51 ensemble members at 40 km resolution with a lead 
time up to 14 days. The limited area ensemble (COSMO LEPS) is composed of 16 members 
on a 10 km grid with a lead time of 120 hours. These ensemble scenarios are all fed into 
hydrological models, so that in principle more than 70 discharge predictions are now available 
(see Figure C.4  and Figure C.5 ).  
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Figure C.4 Deterministic discharge forecasts for the Rhine at Lobith with FEWS RIVIEREN 
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Figure C.5 Probabilistic discharge forecasts for the Rhine at Lobith with FEWS RIVIEREN  
(red = observed discharge, yellow = forecasts from COSMO LEPS ensembles,  
blue = forecasts from ECMWF ensembles) 
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This abundance of forecasts complicates the forecasting process, but at the same time 
also provides valuable information about the (un)certainty of the forecast. This requires, 
however, a translation of the spread of the ensemble forecasts to a probability, which is 
not straightforward. Another problem is how to communicate uncertainties to those that 
have to make management decisions, such as whether to evacuate an area or not. A 
crisis manager requires an unambiguous forecast and is not used to taking decisions 
based on probabilities. 

C.2 Applying the Uncertainty Framework  
 

Following the uncertainty framework, the following key factors will be considered: 

• Level of Risk 

• Lead Time Requirements 

• Types of Model  

• Main Sources of Uncertainty 

• Operational Requirements 

• Run Times 

• Performance Measures 

A worksheet has been developed to assist in this process. A completed worksheet for the 
Lobith Rhine case study is attached to the end of this description. The following sections 
describe the analysis and decision making process, which contributed to completing the 
worksheet.  

C.2.1 Level of Risk 
The accepted risk of an inundation is low. The protection standard for river dikes along the 
Dutch Rhine branches is the 1/1250 per year discharge at Lobith. The corresponding water 
levels at each location are derived from a numerical model calculation, using the design 
discharge at Lobith as a boundary condition. The alarm and warning levels are well below 
these critical levels. 

C.2.2 Lead Time Requirements 
The Rhine River has a rather stable discharge regime near Lobith. Peak flows in the 
downstream part of the Rhine basin generally occur during the winter months. These can 
develop if large amounts of rainfall occur over a large part of the basin, mostly in combination 
with snowmelt. It takes some time for a peak flow to reach the Netherlands. The flow from the 
main tributaries in Germany (Mosel and Main) takes 2 days or more to reach Lobith. 
Consequently, the lead time for flood forecasting is long compared to the individual tributaries 
of the Rhine or the River Meuse. This makes this case study fall into the category 4 type 
catchment (large river basins).  

Model Lobith computes water levels up to four days ahead. However, only the first two days 
are reliable. During the last big floods in 1993 and 1995 it was shown that the preparation 
time for the evacuation of a larger area should be at least 2 ½ to 3 days. The forecasts based 
on hydrologic and hydraulic models are reliable up to four days ahead.  
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C.2.3 Main Sources of Uncertainty 
The main sources of uncertainty for a Type 4 system such as the FEWS Rivieren depend on 
the lead time. This is visualized in Figure C.6 . For short lead times, the uncertainty of the 
stage discharge relation of upstream locations is most important. For longer lead times, 
typically for 5 days or more ahead, the rainfall forecasts dominate the uncertainty.  

 
Figure C.6 Contributions to the uncertainty of the forecast discharge at Lobith 
 

C.2.4 Types of Models 
Discharges at Lobith are forecast using an integrated catchment model cascade consisting of 
a rainfall runoff models (HBV-96) and a hydraulic model (SOBEK-RE) using various forms of 
data assimilation besides this model cascade a statistical model, called LobithW, is used for 
daily forecasting. Meteorological inputs to these models is generated by the national Dutch 
(KNMI) and German (DWD) weather services and the European Centre for Medium Range 
Weather Forecasts (ECMWF). 

C.2.5 Operational Requirements 
For the Rhine at Lobith with a 1-day leadtime an accuracy of 10 cm in water level is 
considered acceptable for decision taking during a crisis situation. This corresponds to an 
accuracy of the discharge of around 250 m3/s. For a 2-day leadtime an accuracy of 20 cm is 
considered acceptable, for a 3-day leadtime 30 cm and for a 4-day leadtime 40 cm (Rhine 
Action plan, 1999). 

For the Meuse, the leadtime is currently 1-day with the goal to extend it in the near future to 
two 2-days. No clear accuracy limits are set for the Meuse. 

C.2.6 Run Times 
Runtimes are currently not an issue for  both Rhine and Meuse. However, Ensemble Kalman 
Filter (EnKF) is only applied in the historical window (1day) because use in forecast window 
(4-10 days) would cost too much runtime. 
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C.2.7 Performance Measures 
For the Rhine and Meuse each year a hindcast over the last two years is performed with the 
newly updated system to test its performance. Below some results of the hindcast over 2006 
& 2007 from Weerts (2008) are shown which make clear that for the first few days initial 
states in the hydraulic model are the dominate source of uncertainty. Based on past 
performance of the HBV-96 model, the rainfall interpolation method was also evaluated and 
improved in 2008 (Weerts et al., 2008).  
   
 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lead time (hours)

R
M

S
E

 in
 fo

re
ca

st
 le

ve
l (

m
)

 

 

HIRLAM

DWD−LM

DWD−GME

ECMWF−DET

 
Figure C.7 Root mean squared error of the water level forecast at the gauge of Lobith on the Rhine 

determined over a two year hindcast (2006&2007) with EnKF using all NWP forecasts (HIRLAM, 
DWD-LM, DWD-GME, ECMWF-DET) 
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Figure C.8 Root mean squared error of the water level forecast at the gauge of Lobith on the Rhine with 

EnKF and without assimilation as a function of lead time determined over a two year hindcast 
(2006&2007). (b) Observed water level together with the mean of the EnKF water level forecast 
and the water level forecast without assimilation at Lobith for an event in January 2007. The 
HBV-96 - SOBEK-RE model cascade is forced using HIRLAM NWP 
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Figure C.9 Root mean squared error of the water level forecast at the gauge of Olst on the Rhine with EnKF 

and without assimilation as a function of lead time determined over a two year hindcast 
(2006&2007). (b) Observed water level together with the mean of the EnKF water level forecast 
and the water level forecast without assimilation at Olst for an event in January 2007. The HBV-
96 - SOBEK-RE model cascade is forced using HIRLAM NWP 

 

C.2.8 Choice of Methods 
 

Table C.1 provides an overall summary of the results from this analysis. Table C.2 presents 
the completed worksheet for this case study.  

Table C.1 Summary of Application of the Uncertainty Framework  
Catchment Lower Rhine River branches  
Forecasting 
Points 

Lobith  

Model Type Type 4  
Model(s) LobithW, HBV, SOBEK  
 Flood Warning Outlook Statements 
Level of 
Service 
Requirement 

6 -12 hours for immediate 
response actions.  

3 days required for evacuation 
operations 

Initialisation Errors:  
Actual water levels 

Initialisation Errors: 
Upstream water levels.  

Modelling Errors:  
Rating curves,  
hydraulic modelling (eg roughness) 

Modelling Errors: 
Hydrological modelling 

Main 
Uncertainties 

Forcing Errors:  
- 

Forcing Errors: 
Upstream inflows, precipitation 

Quantification 
of 
uncertainties 

HUP, multimodel, BMA, Quantile 
regression 

Meteorological ensemble methods 
.  

Reduction of 
uncertainties 

ARMA, bias correction,  EnKF -  
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Table C.2 Worksheet for selection of uncertainty estimation method 
Factor Key Decisions Main Findings 

What is the level of risk at 
individual Forecasting Points or 
flood risk areas ? 

The flood probability standards are 
relatively low.  

What is the level of risk at a 
catchment level ? 

 

Level of Risk 

What complexity of approach is 
generally to be preferred ? 

 

Flood Warning 
6 -12 hours  

What are the lead time 
requirements for each 
Forecasting Point ? Outlook Statement 

For evacuation several days ahead are 
required.  
Flood Warning 
Upstream water levels and inflows 

What are the main forcing 
inputs for each Forecasting 
Point at those lead times ? Outlook Statement 

Forecasted precipitation 
Flood Warning 
Upstream water levels and inflows 

Lead Time 
Requirements 

What, at a catchment level, are 
the key forcing inputs to 
consider for flood warnings and 
outlook statements ? 

Outlook Statement 
Forecasted precipitation 

What are the main sources of 
uncertainty for the catchment for 
flood warnings ? 

Initialisation Errors: 
Actual water levels 
Modelling Errors: 
Rating curves, Hydraulic modelling 
Forcing Errors: 
- 

What are the main sources of 
uncertainty for the catchment for 
Outlook Statements ? 

Initialisation Errors: 
Upstream water levels 
Modelling Errors: 
Hydrological modelling  
Forcing Errors: 
Upstream inflows, precipitation 

Main Sources 
of Uncertainty 

What additional sources of 
uncertainty arise from 
complicating factors ? 

Weir regulations in the Netherlands, 
poorly modelled inflows Netherlands,  

What choices of methods are 
available for the types of models 
? 

HBV-96 
SOBEK-RE 
LOBITHW 

What types of data assimilation 
routines are an option ? 

ARMA 
EnKF 

Types of 
Models 

What potential run time issues 
have been identified ? 

EnKF takes long should be optimized 
Interpolation takes long 

Is a purely qualitative approach 
sufficient for generating 
ensembles? 

No Operational 
Requirements 

Is data assimilation desirable or 
essential ? 

Essential 
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Is conditioning of forecast 
outputs required ? 

Yes 

Are there run time issues for the 
candidate uncertainty estimation 
methods ? 

Yes, EnKF can current only be used in 
historical mode. 

Run Times 

What are the options for 
reducing run times ? 

Use other methods like HUP, BMA, 
Quantile Regression. 

Are suitable performance 
measures already available to 
evaluate sources of 
uncertainty? 

Yes, RMSE but others are also used 
(see Renner et al., 2009) 

Performance 
Measures 

Which sources of uncertainty 
(and locations) are identified ? 

Hydrological Initial state & forecasted 
precipitation 

 




