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Abbreviations 

A&L Agricultural crop and livestock production   

ADB Asian Development Bank   

ADO African Drought Observatory   

ANDMA Afghanistan National Disaster Management Authority   

ASI Agricultural Stress Index   

BCM Billion cubic meters   

CA Central Asia   

CAF Corporación Andina de Fomento, Latin American development bank   

CFSv2 Coupled forecast system model version 2   

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data   

CPC Climate Prediction Center   

CRU Climate Research Unit   

CSC Climate Services Centre   

CSIRO Commonwealth Scientific and Industrial Research Organisation   

CVC Corporación Autonoma del Valle de Cauca   

DIR Drought impact reporter   

DVI Drought Vulnerability Index   

eMODIS EROS Moderate Resolution Imaging Spectroradiometer   

ECMWF European Centre for Medium-Range Weather Forecasts   

ECON Overall economy   

EM-DAT Emergency Events Database   

EN El Niño   

ENA Estudio Nacional de Agua   

ENSO El Niño–Southern Oscillation   

ERA Evaluación Regional de Agua   

ESP Ensemble Streamflow Prediction   

ET Evapotranspiration   

EU-WATCH EU FP6 Project Water and Global Change   

FAO Food and Agriculture Organization of the United Nations   

FEWS Flood Early Warning System   

FEWS NET Famine Early Warning Systems Network   

GCM’s Global Circulation Models   

GDP Gross domestic product   

GeoCLIM Climdata climate data archive format   

GET-D GOES Evapotranspiration and drought   

GFDRR Global Facility for Disaster Reduction and Recovery   

GFS Global Forecast System   

GHACOF Greater Horn of Africa Climate Outlook Forum   

GHMs Global Hydrological Models   

GLS Global Land Surface   
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GOES Geostationary Operational Environmental Satellite system   

GRDC Global Runoff Data Centre   

HEC-HMS Hydrologic Modeling System   

HYDR Hydropower production   

ICPAC IGAD Climate Prediction and Application Centre   
IDEAM Colombian national Institute of Meteorology, hydrology and environmental 

studies 
  

IGAD Inter-Governmental Authority on Development   

IOD Indian Ocean dipole   

IRI International Research Institute for Climate and Society   

ITHACA Information Technology for Humanitarian Assistance, Cooperation and Action   

ITCZ Inter-Tropical Convergence Zone   

IWMI International Water Management Institute   

JAS July-August-September   

JFM January-February-March   

JJA June-July-August   

JMA Japan Meteorological Agency   

JRC Joint Research Centre   

LN La Niña   

m.s.l Mean sea level   

M&IWN Municipal and industrial water needs   

MJO Madden-Julian Oscillation   

MODIS Moderate Resolution Imaging Spectroradiometer   

N Neutral   

NCAR National Center for Atmospheric Research   

NDVI Normalized Difference Vegetation Index   

NDMC National Disaster Management Commission   

NDMO National Disaster Management Office   

NDRRP National Disaster Risk Reduction Platform   
NMA National Meteorology Agency   
NMME National Multi-model Ensemble   

NOAA National Oceanic and Atmospheric Administration   

PCR-GLOBWB PCRaster Global Water Balance   

PDSI Palmer Drought Severity Index   

POP Impact category population   

QBO Quasi Biennial Oscillation   

SADC Southern African Development   

SARCOF Southern African Regional Climate Outlook Forum   

sc-PDSI Self-Calibrated Palmer Drought Severity Index   
SMDI 
SNAP 

Soil moisture deficit index 
Strategic National Action Plan 

  

SPCZ South Pacific Climate Zone   

SPEI Standardized Precipitation Evapotranspiration Index   

SPI Standardized Precipitation Index   
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SSEBop Simplified Surface Energy Balance model   

SSFI Standardized Streamflow Index   

SST Sea surface temperature   

UCAR University Corporation for Atmospheric Research   

UNGRD Unidad Nacional para la Gestión del Riesgo de Desastres   

USAID United States Agency for International Development   

USGS United States Geological Survey   

VegDRI Vegetation Drought Response Index   

VPA Vegetation Productivity Anomaly   

WASP Weighted Anomaly Standardized Precipitation Index   

WaterGAP Water - Global Analysis and Prognosis   

WCI Water Cycle Integrator   

WRI World Resources Institute   

WSI Water scarcity index   
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1. Executive summary 

1.1 Introduction 
Multiple models, methods and tools are available for hazard monitoring and risk assessment. 
This is especially true for drought. Over the past few years, numerous new products have 
been developed that enable the monitoring of drought from satellite observations; map 
drought levels using hydrological models; and compute physical, economic and humanitarian 
impacts of drought. In spite of all these possibilities, there is currently no comprehensive 
inventory and comparison of the available data and tools. It is, therefore, currently very 
difficult to decide on the appropriate model or tool for a specific drought-related application, 
and to find these models and underlying data to perform the assessment. As a result, drought 
hazard monitoring programs and drought risk assessment studies may often use sub-optimal 
approaches and spend substantial resources on finding the appropriate modeling tools. 
 
The main purpose of this report is an evaluation of available drought hazard and risk 
modeling tools and other resources that are available at the global scale for their suitability to 
be applied for drought hazard mapping and hotspot identification, drought risk assessments 
and drought detection and forecasting. This report describes a quantitative and qualitative 
comparative assessment of a selection of drought hazard and risk modeling tools and 
resources that are available from the global drought inventory as developed by the GFDRR 
(Deltares, 2018). Not all modeling tools and resources collected in the global drought 
inventory were taken up in these analyses. Only modeling tools and resources that are 
available online, free of cost, and have global coverage were assessed. The reason for these 
selection criteria is that the results of this study should be applicable for all users in all 
countries of the world. However, for the review and qualitative comparison of drought 
monitoring and forecasting systems, regional and national systems were also assessed. 

1.2 Methods 
The comparative assessment of drought hazard and risk modelling tools and resources 
consisted of the following components: 
• A comparative spatial time-series analysis of drought hazard models. 

o Country scale comparison of global data sets. 
o Validation of global data with local time series. 
o Sensitivity to ENSO-driven hydro-climatic variability. 

• A qualitative comparison of drought impact models. 
• A review and qualitative comparison of drought detection and forecasting systems. 
 
These analyses have been applied for the following five low- and medium-income case study 
countries: Afghanistan, Colombia, Ethiopia, Fiji, and Malawi. These countries were selected 
for their varying hydro-climatic, socioeconomic, and geographical characteristics. The 
methods of this assessment are applied to the selected countries, but are applicable to the 
entire world. For this purpose, the approach therefore relies to a large extent on globally 
available modelling tools and resources. Prior to the analyses listed above, each case study 
country was subjected to an assessment of drought related country characteristics and the 
Falkenmark index for water stress was computed. This information was required to interpret 
and validate the results of the analyses based on global modeling tools and resources. 
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1.2.1 Spatial time series analysis of global datasets 
To assess the performance of meteorological and hydrological drought hazard indices 
available from online global datasets at a national and sub-national scale, comparative spatial 
time series analyses were done. First, the global datasets providing hazard indices are 
subjected to a spatio-temporal comparison. This was done for 16 available dataset-index 
combinations, covering 5 different datasets (Global Land Surface (GLS) from NCAR-UCAR, 
IRI data library, Global Drought Monitor, PCR-GLOBWB from Earth2Observe database, and 
WaterGAP from Earth2Observe database) and five drought indices (SPI3, SPI12, SPEI3, 
SPEI12, SSFI). Next, the two best performing global datasets (PCR-GLOBWB and 
WaterGap) were validated with local discharge measurement data. Finally, an analysis of 
ENSO on the frequency and intensity of the drought events was done. 

1.2.2 Assessment of drought impact and risk platforms and data 
With this assessment, we reviewed the quality and applicability of online available drought 
impact and risk platforms and datasets. Five available online platforms and datasets were 
assessed for their capacity to provide spatial drought impact and/or risk information: Global 
map of drought risk (JRC), IWMI water data portal, the Aqueduct Water Risk Atlas, the FAO 
Agricultural Stress Index, and the African Drought Observatory. The online platforms and 
datasets providing impact and risk information based on historical data were compared with 
information from the country descriptions and, where possible, with each other. 

1.2.3 Qualitative assessment of forecasting and monitoring products 
The forecasting and monitoring products used in the five case study countries were described 
and subjected to a qualitative analysis. We focussed on assessing the currently available 
operational systems that support decision processes on the management of drought 
conditions. We concentrate primarily on operational systems used at the national level either 
for monitoring drought conditions, as well as those available systems providing forecasts at 
the seasonal scale. Where relevant, forecasting systems at the regional scale (where region 
indicates a geographic region, such as Southern Africa) are included. The objective of this 
section is to provide insight into current practices in drought monitoring and forecasting in the 
case study countries, how these are used to support the management of drought events, the 
data and systems used and the efficiency and availability of information during drought 
events. 

1.3 Conclusions and recommendations 

1.3.1 Country characteristics and reported droughts 
A concise but complete description of drought related country characteristics is an important 
starting point for a drought hazard and risk assessment as it provides much needed 
background information to interpret analyses results or for further drought risk assessments. 
In addition it reveals the existing level of drought knowledge in the country. The following 
characteristics provide the context for a drought assessment: socio-economic country 
characteristics, meteorological and hydrological characteristics, key characteristics of the 
natural environment and land use, information about water resources and demand, as well as 
historical droughts and drought impacts. 

1.3.2 Comparison of global datasets 
The various drought hazard indices based on the global datasets showed varying 
correspondence to the registered drought events. Also, the comparability of dataset-index 
combinations in detecting droughts varies between the case study countries. Based on our 
analysis, the SPEI3 index based on the WaterGAP dataset shows the best match with 
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registered droughts, followed by SPEI3 and indices based on the Global Drought Monitor and 
PCR-GLOBWB datasets. 
 
Interestingly, the dataset-index combinations assessed in this project showed more or other 
drought hazards than were registered (45% false alarms). The dataset-index combination 
GLS-SPI3 and GLS-SPI12 resulted in a high level of false alarms for 3 out of the 5 case study 
countries, while the false alarm rate for WaterGAP-SSFI was relatively low. The 
overestimation of drought hazards can be caused by the specific critical threshold values set 
for the drought hazard indices or by a mismatch in the timing of the modelled drought hazards 
and the registered events. Moreover, the modelled droughts only represent the hazard aspect 
of drought risk, while for the registered droughts the exposure and vulnerability to drought are 
also important. Hence, a drought does not necessarily have to result in adverse impacts. 
 
At the time of this research only meteorological drought and hydrological drought global 
spatio-temporal datasets were available. It is recommended that a similar analysis is made for 
agricultural drought and socio-economic drought if and when such datasets become 
available. 

1.3.3 Validation of global datasets with local time series 
Using the two global models in the different country scale case studies to validate its results 
with local time-series we do not find large consistent differences in performance. No single 
best model exists across all case study countries or even within each case study country. 
Overall, the global models perform well in representing the relative variability of droughts 
while the performance on simulating the absolute values is less good. Having such 
knowledge at hand, the global models can be safely applied in drought event detection and 
monitoring, but should be handled with care when applying them for water resources 
management purposes. 

1.3.4 ENSO analysis 
For most case study countries we find significant differences in drought frequency and 
exposure between El Niño/La Niña phases. Despite the significant anomalies in drought 
frequency and exposure, we do not always find a strong correlation between the continuous 
drought indicator values and the Japan Meteorological Agency (JMA SST) index. Low 
correlation results indicate that the identified variability in drought conditions cannot be 
explained merely by variations in the JMA SST; here drought variability is the result of a 
composite of actors. This is the case for example for Ethiopia and Malawi. 
 
Whereas the country-scale anomalies are shown to be consistent across the two models 
investigated when looking at the meteorological drought indicators (SPI, SPEI), the results 
differ in most case studies for the SSFI indicator. This can be explained by the differences in 
routing routines and calibration between the two models and the level of variability 
incorporated within the two models. Looking at the spatially explicit anomalies in exposure 
and the spatial patterns of correlation we do see, however, that for most case studies 
investigated both models show a similar spatial pattern and that the choice of model does not 
significantly affect the outcomes. 
 
In this assessment we only coupled the exposure to drought with the ENSO signal. However, 
ENSO is part of an ocean–atmospheric climate variability system that constitutes many more 
sub-regional systems and local circulation patterns like the Indian monsoon, Pacific/North 
America pattern, North Atlantic Oscillation, East Atlantic/West Russia pattern, Scandinavia 
pattern, which modulate the ENSO signal (Hannaford et al., 2011). Future research should 
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therefore look into the sensitivity of drought exposure to combinations of these systems, 
especially in areas that provide a relative low ENSO signal. 

1.3.5 Assessment of drought impact and risk models 
The five online platforms and datasets assessed for their capacity to provide spatial drought 
impact and/or risk information showed advantages and disadvantages. It was found that a 
diversity of approaches, underlying data, and spatial scales are used to create and present 
impact and risk. Some platforms/datasets show high spatial detail and focus on one or 
several specific drought impact indices (IMWI, FAO platform), while other platforms provide 
more generic and large scale information of abstract impact indices (Global map of drought 
risk from JRC, African Drought Observatory), and/or sectors (Aqueduct). It is recommended 
that more uniformity in drought impact and risk indices and visualisation is promoted in order 
to increase comparability of products. Moreover, this will probably increase the level of 
understanding and utilization of the drought impact and risk information. 
 
An important general observation during this project was the unavailability of data about 
drought related impacts for relevant impact categories on a sub-national scale. As a result, 
actual validation of the maps from the online platforms and datasets was not possible. For 
Malawi, an analysis of national and sub-national agricultural data could be made available 
based on information from FEWS NET. However, also in the case of Malawi, drought impact 
data on hydro-power and data on other relevant impact categories were not available. It is 
advised that a separate investigation is started to develop a methodology for collection of 
sub-national drought impacts in the main sectors and that effort is put into building a database 
for such data (historic impacts as well as exposure and vulnerability information). Such 
information could be added to the (existing) online platforms and databases to increase the 
reliability and relevance of the impact and risk maps. 

1.3.6 Qualitative assessment of forecasting and monitoring products 
Based on the qualitative analysis of existing drought monitoring and forecasting systems in 
the five case study countries, the following key conclusions are provided: 
• Despite the existence of several global scale drought monitoring and forecasting 

systems, it is found that these systems are most mature in the countries where there are 
one or more national or regional agencies tasked with providing monitoring and 
forecasting information and where there are national or regionally focused versions of 
the global datasets. 

• Of the five countries analysed, drought monitoring and forecasting systems are most 
limited in Afghanistan and most mature in Ethiopia. 

• In general, most of the national and regional monitoring systems in the case study 
countries rely on FEWS data products among other products, and forecasting systems 
combine consensus forecasts (based on local experts assessments and statistics) with 
forecasts from global dynamical forecasts. 

 
Based on this assessment, the following recommendations are provided for starting up or 
improving drought detection/early warning and forecasting systems: 
• Appoint one or, preferably, several national and regional agencies with providing 

monitoring and forecasting information to authorities and the public. A strong national or 
regional agency mandated to provide operational drought monitoring and early warning 
products, is key. 

• It is important that governments commit to multi-year collaboration so that the 
operational demonstration of monitoring and forecasting products has been realized. 
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Make sure that local agencies have the skill and infrastructure they need to keep the 
system operationally sustainable. 

• In case there is a lack of understanding of the climate and drought sensitivity and 
exposure to different sectors, it is important that research is conducted to assess the 
drought characteristics and the level of drought predictability for a given country or 
region. 

• Global systems are extremely valuable as they provide first cut monitoring and early 
warning product for the national and regional agencies, without them spending their 
computational resources. Here it is important that local/regional agencies have 
knowledge as well as easy and smooth access to global products. 

• Monitoring and forecasting products should be developed in close collaboration with the 
local/regional agencies. The agencies should be provided with the right tools, skills and 
datasets needed so they can best utilize their local expertise on monitoring and early 
warning. Assistance from international experts could be requested to set up and/or 
improve drought detection and forecasting systems. 

• Importantly, drought detection and monitoring systems should connect closely to the 
questions and needs of local/regional agencies and other stakeholders. In doing so, 
data and derivative products from such a system can be packaged into usable impact 
information. 
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1 Introduction 

1.4 Background 
Multiple models, methods and tools are available for hazard monitoring and risk assessment. 
This is especially true for drought. Over the past few years, numerous new products have 
been developed that enable the monitoring of drought from satellite observations; map 
drought levels using hydrological models; and compute physical, economic and humanitarian 
impacts of drought. The products include academically published papers, online web 
platforms and operational tools. 
 
In spite of all these possibilities, there is currently no comprehensive inventory and 
comparison of the available data and tools. It is, therefore, currently very difficult to decide on 
the appropriate model or tool for a specific drought-related application, and to find these 
models and underlying data to perform the assessment. As a result, drought hazard 
monitoring programs and drought risk assessment studies may often use sub-optimal 
approaches and spend substantial resources on finding the appropriate modeling tools. 
 
The GFDRR aims to support professionals in assessing the drought hazard and risk in data-
scarce environments with clear information and guidance documents. This is realized with the 
project “Global Inventory and Comparative Assessment of Drought Risk Modeling Tools”. The 
project starts with a thorough inventory of all relevant online platforms, newsletters/bulletins, 
datasets, indices and other relevant tools that can be used to detect and monitor drought risk 
in data scarce areas. In this project phase the drought risk models are subjected to a more 
detailed analysis. This analysis comprises a quantitative and qualitative comparative 
assessment of the ability of the models in capturing drought impacts for different impact 
categories: (i) population; (ii) municipal and industrial water needs; (iii) agricultural crop and 
livestock production; (iv) hydropower production; and (v) the overall economy (e.g. GDP). The 
analysis will be completed for five low- and medium-income countries that are subject to 
diverse climatic and socio-economic conditions (Afghanistan, Colombia, Ethiopia, Fiji, and 
Malawi). Subsequently, a set of representative drought events is defined, reflecting the typical 
drought type and severity in the case study countries, and covering the range of possible 
socioeconomic impacts and frequencies. 

1.5 Purpose and use of this document 
The main purpose of this report is an evaluation of available drought hazard and risk 
modeling tools and other resources that are available at the global scale for their suitability to 
be applied for drought hazard mapping and hotspot identification, drought risk assessments 
and drought detection and forecasting. This report describes a quantitative and qualitative 
comparative assessment of a selection of drought hazard and risk modeling tools and 
resources that are available from the global drought inventory as developed by the GFDRR 
(Deltares, 2018). This global inventory includes online platforms, newsletters/bulletins, 
datasets, indices, tools and modelling software. The collected drought risk modeling tools and 
resources cover a range of applications, including drought detection and forecasting, drought 
hazard mapping, as well as assessments of drought impacts and risks. 
 
The comparative assessment described in this report consisted of the following components: 
• A comparative spatial time-series analysis of drought hazard models; 
• A qualitative comparison of drought impact models; 
• A review and qualitative comparison of drought monitoring and forecasting systems. 
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Not all modeling tools and resources collected in the global drought inventory were taken up 
in these analyses. Only modeling tools and resources that are available online, free of cost, 
and have global coverage were assessed. The reason for this selection criteria is that the 
results of this study should be applicable for all users in all countries of the world. For the 
review and qualitative comparison of drought monitoring and forecasting systems, regional 
and national systems were also assessed. 
 
These analyses have been applied for the following five low- and medium-income case study 
countries: Afghanistan, Colombia, Ethiopia, Fiji, and Malawi. These countries were selected 
for their varying hydro-climatic, socioeconomic and geographical characteristics. The 
methodology and results of this assessment were developed for the selected countries, but 
are applicable to the entire world. Therefore, for our purposes, the approach relies to a large 
extent on globally available data. 

1.6 Reading guide 
 
Chapter 2 describes the methods and data that were used to perform the comparative 
assessment of the pros and cons of the drought risk models identified within the global 
inventory of drought risk modeling tools. In the subsequent chapters (3-7), this approach is 
demonstrated for the five case study countries and the results of the various quantitative and 
qualitative comparative assessments are presented for each country. In Chapter 8 
conclusions are drawn and recommendations are provided. In addition, the applicability of the 
results of the quantitative and qualitative comparative assessment described in this report for 
all countries in the world is explained. 
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2 Approach and Methods 

This chapter describes the approach for the comparative assessment of the pros and cons of 
the drought risk models identified by the global inventory of drought hazard and risk modeling 
tools and resources (Deltares, 2018). The approach consists of several aspects and methods 
of drought risk analyses, which are described in the consecutive sections of this chapter: 
 
1. Assessment of drought risk related country characteristics 
2. Assessment of available drought hazard models 

o Comparison and validation of global drought hazard models at the country scale 
o Comparison of global drought hazard models with observed local data 
o ENSO analysis 

3. Assessment of drought impact and risk platforms and datasets 
4. Evaluation of forecasting and monitoring systems 

2.1 Assessment of drought related country characteristics 
The first step in a drought risk assessment consists of a concise description of drought 
related country characteristics, based on easily available information and expert knowledge. 
The goal is to assess the primary characteristics of the severity and frequency of droughts, 
drought exposure (water demand), water stress and drought vulnerability (potential economic 
losses, potential to cope with drought). An assessment contains information regarding the 
countries general characteristics, (location, size, population, governance aspects, economic 
activities), description of hydrogeology and water resources/water use, climate and an 
overview of reported historic drought events. For the five case study countries, the water 
availability relative to the water demand was evaluated using the Falkenmark Index (see 
section 2.1.1). Information about subnational levels of water stress can be taken from the 
Aqueduct Water Risk Atlas (Baseline Water Stress). An overview of reported historical 
droughts was based on the disaster impact database EM-DAT, which was also supplemented 
with online searches of historic droughts as reported by official institutions like the national 
meteorological institutes. 

2.1.1 Relative water availability - Falkenmark Index 
When describing water availability in a country, the Falkenmark Water Stress Indicator, which 
was developed by the Swedish water expert Falkenmark in 1989, is one of the most 
commonly used indicators. This index consists of the sum of the total yearly local runoff per 
country compared to estimates of population density. Hence, any influences of temperature 
on water demand are not taken into account. Water availability of more than 1,700 
m³/capita/year is defined as the threshold above which water shortage occurs only irregularly 
or locally. Below this level, water scarcity arises in different levels of severity. Below 1,700 
m³/capita/year water stress appears regularly, below 1,000m³/capita/year water scarcity is a 
limitation to economic development and human health and well-being, and below 500 
m³/capita/year water availability is a primary constraint to life. Despite its global acceptance, 
this indicator has numerous shortcomings. First of all, only the renewable surface and 
groundwater flows in a country are considered. As such, transboundary water fluxes are not 
taken into account in this analysis. Moreover, the water availability per person is calculated as 
an average with regard to both the temporal and the spatial scale and thereby neglects water 
shortages in dry seasons or in certain regions within a country. A more detailed analysis on 
water scarcity conditions would require the use of the Water Scarcity Index (WSI, Liu et al., 
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2017). However, computing this index requires the availability of (modelled) water demand 
estimates. Such estimates are usually not publicly available. 
 
For our analysis, we used the Falkenmark Index with a threshold of 1700 m3/cap/yr as a 
general indication to identify whether countries are in a (population-based) water scarcity 
status. The analysis was done for the five case study countries using both the PCR-GLOBWB 
and the WaterGAP spatio-temporal datasets. Historical population estimates for these 
countries for the period 1979-2010 were taken from Wada et al. (2011a, b), who derived 
yearly gridded population maps (0.5x0.5 degree) from yearly country-scale FAOSTAT data in 
combination with decadal gridded global population maps (Klein Goldewijk and van Drecht, 
2006). Furthermore, it does not take water quality into account nor does it give information 
about a country’s ability to use the resources. Even if a country has sufficient water according 
to the Falkenmark Indicator, these water resources may possibly be unused because of 
pollution or insufficient access. Values of water availability and water demand for selected 
countries are depicted in Figure 2.1Figure 2.1. 
 

 
Figure 2.1 Time line of country-wide water scarcity estimates using the Falkenmark Index. Lines show the 
yearly water availability per capita in m3 whereas the coloured lines show the water availability for the 
different countries and the black line indicates the threshold for water scarcity: 1700 m3/cap/year. Dashed 
lines show the estimated values for WaterGAP whereas normal lines show the estimates for PCR-GLOBWB. 
 
Figure 2.1Figure 2.1 shows the Falkenmark index on a yearly basis for the period 1979 to 
2010. When looking at the graph we see that large variations exist in the available volume of 
water per capita per year. Whilst Colombia and Fiji have a relatively large source of water 
availability per capita, water availability per capita per year is significantly less for 
Afghanistan, Malawi and Ethiopia. These latter three countries are approaching or already 
crossing the critical threshold value of 1700 m3/cap/year when using the country-total values. 
All countries show, moreover, a decreasing trend, with less water availability per capita per 
year in more recent years compared to the start of the time-line for this analysis. This is due 
to a combination of increases in population density per country and changes in total yearly 
water availability. What can also be seen from the graph is that both Fiji and Colombia have a 
strong inter-annual fluctuation in their water availability per capita per year caused by the 
inter-annual variability in total water availability for these countries; influenced by large scale 
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atmospheric patterns like ENSO, whereas the water availability is relatively constant for the 
other countries. Estimates from the two model-inputs differ slightly with the WaterGAP 
(dashed lines) having relatively lower estimates for Fiji, Ethiopia, and Malawi. Estimates for 
Afghanistan and Colombia are very similar for the two models. 

2.2 Spatial time series analysis of global datasets 
In the second section, comparative spatial time series analyses are performed for the 
meteorological and hydrological hazard drought indices available online from global datasets. 
First, the global datasets providing hazard indices are subjected to a spatio-temporal 
comparison. Next, the global datasets are validated with local measurement data. Finally, an 
analysis of ENSO on the frequency and intensity of the drought events was done. The three 
elements of the spatial time series analysis are described in more detail below. 

2.2.1 Country scale comparison of global datasets 
National and sub-national droughts can be assessed based on available online spatio-
temporal global datasets of drought indices. Here, we made a comparison of the drought 
hazard characteristics based on drought indices from five datasets that are freely available 
over the 30-year period 1983 - 2013: Standard precipitation Index (SPI) from Global Land 
Surface (NCAR-UCAR; Keyantash and John, 2018), SPI from the IRI data library, 
Standardised Precipitation-Evapotranspiration Index (SPEI) (Vincente et al., 2010) from the 
Global Drought Monitor, and SPI, SPEI, and Standardized Streamflow Index (SSFI) (Telesca 
et al, 2007) from PCR-GLOBWB (eg. Van Beek, 2007; Biekens and Van Beek, 2009) and 
WaterGap (eg. Lehner et al., 2006) (both available through the Earth2Observe WCI portal). 
Table 2.1Table 2.1 gives an overview of the 22 datasets and indices used in the analysis. The 
choice for these datasets was based on practical criteria ‘easy to obtain’, ‘widely used’, and 
‘most promising – expert judgement’. More information about the specific drought indices, 
datasets, and platforms can be found through the online catalogue of drought hazard and risk 
modelling tools and resources1. 
 
Table 2.1 Overview of indicators available as global spatio-temporal dataset from five various platforms that 
were assessed. 
 Global Land 

Surface  
(NCAR-UCAR) 

IRI data 
library 

Global Drought 
Monitor 

PCR-GLOBWB 
(Earth2Observe) 

WaterGAP 
(Earth2Observe) 

SPI1 
 

x 
 

x x 

SPI3 x x 
 

x x 

SPI12 x x  x x 

SPEI1 
  

x x x 

SPEI3 
  

x x x 

SPEI12 
  

x x x 

SSFI 
   

x x 
 
For each country, we estimated the severity of droughts by computing the index levels at a 
monthly time scale for each grid cell: moderately dry (index value below -1), severely dry 
(index value below -1.5) and extremely dry (index value below -2) (McKee et al., 1993). Next, 
the percentage-area of the country falling into these drought classes was calculated. This 

                                                   
1 https://droughtcatalogue.com/ 
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gives an indication of the drought hazard in terms of both the severity and spatial extent of the 
drought hazard. The resulting time series were evaluated in two ways: 
 
• Assessment of the overlap with droughts reported by EM-DAT and national services, 

providing a basic validation of the drought hazard models of the different datasets and 
indices: 
• Hit rate (percentage of registered drought events computed by the dataset-index 

combinations) 
• False alarm (percentage of droughts computed by the dataset-index combinations 

that do not match with a registered drought event) 
 

• Assessment of the comparability of the indices between the different datasets, showing 
the level of agreement between datasets. 

 
For this purpose the computed drought hazards were assigned to three categories: 
• Pronounced drought (+): covering over 40% area of the country with extreme or 

severe drought for at least 3 months 
• Moderate drought: (+/-): covering between 20% and 40% area of the country with 

extreme or severe drought for at least 3 months 
• Limited drought (-): covering less than 20% area of the country with extreme or 

severe drought and/or for less than 3 months. 

The analysis was done for all combinations of datasets and indices listed in Table 2.1Table 
2.1, except for the SSP1 and SPEI1. 

2.2.2 Validation of global data with local time series 
For each of the selected countries we evaluated the performance of the datasets from the 
global repository with observational-based reference data. Here, we evaluated monthly 
discharge estimates from PCR-GLOBWB and WaterGAP against historical discharge 
observations from the Global Runoff Data Centre (GRDC)2. An assessment of monthly 
discharge estimates instead of monthly drought indicator values was performed in this 
evaluation since the drought indicator estimates need at least 30 years of data as input, which 
are often not available by the historical observations period of record. Comparing simulated 
drought indicators having a 30-year basis with observed drought indicators that use a 
different reference time-period would result in biased performance metrics. 
 
As a reference dataset, we used all available discharge stations provided by the GRDC for 
each of the countries. Since length of the monitored time-series of each of the discharge 
observation stations varies, we applied a pair-wise comparison of the data. In doing so, some 
stations having more data-points may have been used to calculate the performance metrics 
compared to other stations. Table 2.2Table 2.2 provides an overview of the number of 
stations used for each of the countries and their mean, minimum and maximum length of 
time-series covered. As such, Table 2.2 shows that the length of available time-series varies 
significantly between the countries with a minimum of only two months of data-availability for 
one station in Afghanistan. Although stations with a limited number of data-points may not 
always be able to represent trends or variability correctly, they still give an insight into the 
overall correctness of the discharge estimates and how ‘off’ the models are when compared 

                                                   
2 http://www.bafg.de/GRDC/EN/Home/homepage_node.html 
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to observations. Hence, we have taken all available data points into account when evaluating 
the performance of the models, despite their limited temporal availability. 
 
Table 2.2 Overview of the availability of reference discharge data per country. The numbers between 
brackets indicate the number of stations with an upstream catchment area larger than 9,000 km2. 
Country Number of 

stations 
Mean length time-
series (months) 

Maximum length 
time-series 
(months) 

Minimum length 
time-series 
(months) 

Afghanistan 9 (5) 16.6 21 2 
Colombia 46 (-) 112.7 120 84 
Ethiopia 38 (3) 84.7 327 24 
Fiji 2 (-) 24 24 24 
Malawi 47 (4) 95.1 11 154 
 
Performance metrics that were used to evaluate the ability of the datasets that come from the 
global repository are the Pearson correlation coefficient and the Percent Bias. Although a 
multitude of performance metrics are available, these two indicators are widely used in the 
scientific literature and are good indicators aimed at giving a good indication of the ability 
of the model-datasets to: (1) give a good reflection of the seasonal and inter-annual variability 
of hydrological conditions (Pearson correlation coefficient); and (2) estimate the absolute 
discharges correctly (Percent Bias). Whilst for the purpose of drought identification and 
characterization having a good correlation coefficient might be sufficient, water managers 
dealing with the absolute deficits and measures to cope with it might be more interested in the 
ability of models to represent the actual values correctly. 

2.2.3 ENSO analysis 
Hydro-climatic variability linked by large scale oscillation mechanisms partly determines the 
temporal variations in hydrological conditions, which influences the occurrence and severity of 
droughts. Here we evaluated each of the selected countries to determine their sensitivity to 
ENSO-driven hydro-climatic variability. ENSO was chosen as an indicator for hydro-climatic 
variability as it is the most dominant signal of inter-annual climate variability (McPhaden et al., 
2006). Moreover, different studies suggest that ENSO can be predicted with reasonable skill 
up to several seasons beforehand (Cheng et al., 2011; Ludescher et al, 2014), hence it can 
provide useful information for adaptation management to account for inter-annual variability in 
blue water resources and drought (Veldkamp et al., 2015). Different global studies have 
assessed the impacts of ENSO on drought before (Vicente-Serrano et al., 2011; Davey et al., 
2014; Kumar et al., 2017; Wang-Chun Lai et al., 2018). 
 
A country’s sensitivity to ENSO driven hydro-climatic variability was assessed in multiple 
ways. First, we quantified the ‘per country median area’ exposed to droughts (SPI/SPEI/SSFI 
<-1) during El Niño, La Niña, or neutral years. Subsequently, we evaluated whether or not 
significant anomalies exist between these estimates of areas exposed to droughts during El 
Niño versus non-El Niño years, and during La Niña versus non-La Niña years. Secondly, we 
assessed per country in a spatially explicit manner whether or not the frequency of drought 
months differs significantly between El Niño and non-El Niño years and between La Niña and 
non-La Niña years. Differences within the frequency of drought months larger than 5% were 
considered here to be significant. Finally, we tested each country in a spatially explicit manner 
as to whether or not significant correlations exists between the continuous values of the 
different drought indicators (ranging from -3 to +3) and the monthly ENSO conditions. In order 
to do so we investigated various lag-time periods, ranging from 1 to 12 months. Results 
shown here are only for those months having the best correlation results. 
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We examined the relationship between drought conditions and ENSO driven climate 
variability by means of their correlation with the Japan Meteorological Agency’s (JMA) Sea 
Surface Temperature (SST) anomaly index. To distinguish between El Niño, La Niña and 
neutral years, we used the classification of ENSO years from the Centre for Ocean-
Atmospheric Prediction Studies based on the JMA SST values. Years are assigned as El 
Niño or La Niña years when their 5-month moving average JMA SST index values are + 0.5 
oC or greater (El Niño) / - 0.5 oC or greater (La Niña) for at least six consecutive months 
(including October-December). Continuous JMA-SST values were used for the correlation 
analysis (Table 2.3Table 2.3). 
 
Table 2.3 Hydrological years that fall under the El Niño and La Niña phases. Other years are classified as 
ENSO neutral. 

ENSO phase Hydrological year 
El Niño 1982,1986,1987,1991,1997,2002,2006,2009 
La Niña 1988,1998,1999,2007,2010 

 
All calculations were made for multiple drought indicators (SPI, SPEI, and SSFI) over multiple 
accumulation time periods (1, 3, 12) by using the data-inputs from two GHMs (WaterGAP, 
PCR-GLOBWB). For the sake of simplicity, a selection of results is shown here. All underlying 
data and figures (providing information on the other indicators, datasets, or accumulation 
periods used) are provided as a supplement. Results are presented by country. 

2.3 Assessment of drought impact and risk platforms and datasets 
Exposure and vulnerability to droughts are an important aspect of drought risk assessment. 
Based on the global inventory of drought hazard and risk models, an overview was made for 
online platforms, datasets and newsletters/bulletins that provide information on drought 
impacts (Table 2.4Table 2.4). We distinguish between the following impacts categories: 
population; municipal and industrial water needs; agricultural crop and livestock production; 
hydropower production; and the overall economy. In general, these platforms and datasets 
can be used for a first assessment of drought impacts and risks in a country or region thereby 
giving an indication of drought impact hotspots. This information may help to identify hotspots 
and prioritize more detailed efforts for drought risk analysis. 
 
Seven models provide drought impact information for the whole world. From these models, 
four include information on temporal aggregated information historic drought impacts and/or 
risk at sub-national levels. Two other models focus on providing real-time drought impact 
information and the EM-DAT database does not provide sub-national information. These 
models are not taken up in this analysis of impact models. Two models provide drought 
impact information for Africa. From these models, one includes temporal aggregated 
information on historic drought impacts and/or risk, while the other model focusses on 
providing real-time drought impact information. The models for Europe and North America are 
not considered in the assessment, because they do not cover any of the case study 
countries. 
 
A qualitative assessment of the five models that provide historical information at sub-national 
levels was performed. For each of the case study countries the relevant impact and/or risk 
models are presented and compared with available knowledge and information of impacts. 
For Malawi, the assessment is extended with an analysis of the impact data collected from 
FEWS-NET projects. Platforms that provide (near) real-time and forecasting information are 
evaluated in the sections about monitoring and forecasting products (see section 2.4 of this 
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chapter). Below, a short description of the five drought impact models that are taken up in the 
qualitative assessment. Information on all of these models can be found in the report 
“Drought hazard and risk modeling tools” (Hendriks, 2017). 
 
Table 2.4 Overview of online platforms, datasets, and newsletters/bulletins that provide historical drought 
impact information about the impact categories population (POP), municipal and industrial water needs 
(M&IWN), agricultural crop and livestock production (A&L), hydropower production (HYDR), and the overall 
economy (ECON). Other applications of the drought risk models are provided in the overview. 
 

 
 

2.3.1 Global map of drought risk (Global) 
A global drought risk map was developed at the JRC based on a relatively simple and data-
driven method (Carrão et al., 2016). This global map of drought risk has been developed at 
the sub-national administrative level for the period 2000–2014, using the product of three 
independent determinants: hazard, exposure and vulnerability. Drought hazard is determined 
here by means of the weighted anomaly of the standardized precipitation index (WASP). 
Drought exposure takes into account the spatial distribution of population and the amount of 
numerous physical elements (proxy indicators) characterizing agriculture and primary sector 
activities, namely: crop areas (agricultural drought), livestock (agricultural drought), industrial/ 
domestic water stress (hydrological drought), and human population (socioeconomic 
drought). The relative exposure of each region to drought was obtained from a 
multidimensional set of indicators by its statistical positioning and normalized multivariate 
distance to a performance frontier. Drought vulnerability was computed as a 2-step composite 
model that is derived from the aggregation of proxy indicators representing the economic, 
social and infrastructural factors of vulnerability at each geographic location, as similar as for 
the Drought Vulnerability Index (DVI) (Naumann et al., 2014). The proxy indicators of 

Aqueduct Water Risk Atlas Global -- ECO X -- X

IWMI water data portal Global -- POP, M&IWN, 
A&L, HYDR, ECO

X -- X

Agricultural Stress Index and 
precipitation anomalies (FAO)

Global A&L -- X X X

Global Agricultural Drought 
Monitoring and Forecasting 
System

Global A&L -- -- X --

GEOGLAM Crop Monitor Global A&L -- X X --
Canadian agroclimate impact 
reporter

North 
America

A&L -- X -- X

US Drought Impact Reporter 
(DIR)

North 
America

POP, M&IWN, 
A&L, HYDR, ECO

-- X X X

Vegetation Drought Response 
Index (VegDRI)

North 
America

A&L -- X -- X

GOES Evapotranspiration and 
Drought (GET-D)

North 
America

A&L -- X -- --

European Drought Centre Impact 
Report Inventory

Europe ECO, A&L, 
M&IWN

-- X -- X

ITHACA Drought Monitoring Africa -- A&L, POP X X --

African Drought Observatory Africa A&L, ECO A&L, ECO X X X

Global map of drought risk (JRC) Global
POP, M&IWN, 

A&L, ECO
POP, M&IWN, 

A&L, ECO X X X

EM-DAT Global ECO, POP -- X -- --
European Drought Centre 
Reference Database Europe

POP, M&IWN, 
A&L, HYDR, ECO -- X -- X

PL
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FO
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Region Impact Mapping Risk Mapping
Monitoring/ 
forecasting

Historical 
information

Aggregated impact 
information
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exposure and vulnerability that have been used as input for the respective models were 
compiled for 170 countries and 2,515 sub-national administrative regions. Subsequently, both 
exposure and vulnerability indicators have been normalized in this study, enabling for a 
comparison between regions while at the same time limiting the evaluation of absolute 
drought risk levels. 

2.3.2 Aqueduct Water Risk Atlas (Global) 
The Aqueduct Water Risk Atlas is a global platform3 that can be used to obtain static global 
information of meteorological, hydrological, agricultural, socio-economic drought hazards as 
well as drought risk to the overall economy. The information is available for historical and 
future (2020 and 2040) periods at the spatial scale of countries and river basins. The platform 
presents the following 12 indicators and indices related to drought: overall water risk, baseline 
water stress, inter-annual variability, seasonal variability, flood occurrence, drought severity, 
upstream storage, groundwater stress, return flow ration upstream protected land, media 
coverage, access to water, threatened amphibians. The umbrella index “Overall Water 
Stress” identifies areas with higher exposure to water-related risks and is an aggregated 
measure of all selected indicators from the Physical Quantity, Quality and Regulatory & 
Reputational Risk categories. 

2.3.3 IWMI water data portal (Global) 
This platform4 can be used to obtain historic information of socio-economic drought hazards 
for the world. Indices providing drought impact and drought risk information included are 
socioeconomic drought vulnerability index, drought risk index with respect to monthly 
precipitation, drought risk index with respect to monthly river discharge, mean drought run 
duration (months), storage-drought duration (length) index, and the storage-drought deficit 
index. The information is available for a historical period with a spatial scale of 0.5o. 

2.3.4 FAO Agricultural Stress Index and precipitation anomalies (Global) 
The FAO-platform “Agricultural Stress Index and precipitation anomalies”5 can be used to 
obtain historical (annual summaries) and near real-time information of agricultural drought 
hazards and drought impact to agriculture and livestock. The data on crop conditions are 
available at a global and country scale on a decadal basis since 1984 up to the month 
previous to the current month. Annual summaries are available as well. The provided impact 
indices (NDVI, Agricultural Stress Index, Vegetation Health Index, and Vegetation Condition 
Index) are mapped at a gridded resolution of 1 km. Country scale graphs with time series of 
the indices are also provided. The indices provided through this platform are described in in 
the report “Drought hazard and risk modeling tools and resources” (Hendriks, 2017). 

2.3.5 African Drought Observatory6 (Africa) 
This platform7 can be used to obtain information about meteorological, hydrological and 
agricultural drought hazards as well as drought impact to the overall economy on a near real-
time and forecast (SPI3 only) basis for Africa. Indices that are presented are precipitation 
anomalies (percent of normal), SPI3, Vegetation Productivity Anomaly (VPA), Drought 
Hazard Index, Drought Vulnerability Index, and the Drought Risk Index. The precipitation 
anomalies, SPI3, and the Vegetation Productivity Anomaly are available at a 1o spatial 

                                                   
3 http://www.wri.org/resources/maps/aqueduct-water-risk-atlas 
4 http://waterdata.iwmi.org/Applications/Drought_Patterns_Map/ 
5 http://www.fao.org/giews/earthobservation/asis/index_1.jsp?lang=en 
6 The African Drought Observatory will be will be fully integrated into the Global Drought Observatory.  
7 http://edo.jrc.ec.europa.eu/ado/ 
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resolution. The JRC Drought Hazard Index, JRC Drought Vulnerability Index, and JRC 
Drought Risk Index are available at country and sub-basin scales. 

2.4 Qualitative assessment of forecasting and monitoring products 
This section presents an analysis of the products used in each of the five case study 
countries for monitoring and forecasting drought conditions. For each of these countries, we 
focus on assessing the currently available operational systems that support decision 
processes on the management of drought conditions. We concentrate primarily on 
operational systems used at the national level either for monitoring drought conditions, as well 
as those available systems providing forecasts at the seasonal scale. Where relevant, 
forecasting systems at the regional scale (where region indicates a geographic region, such 
as Southern Africa) are included. The objective of this section is to provide insight into current 
practices in drought monitoring and forecasting in the case study countries, how these are 
used to support the management of drought events, the data and systems used and the 
efficiency and availability of information during drought events. 
 
For each of the five focus countries the following aspects are described: 
• A brief résumé on the occurrence of drought events within the country; 
• A description of currently available monitoring and forecasting information and systems, 

how the process is organized and how these systems are used in support of decision 
making. 

• For each of the systems discussed relevant details are provided in tabular format; 
• When information is available, a short review is also provided describing the potential 

for seasonal forecasts in the case study countries, including relevant literature and 
current initiatives to improve drought monitoring and forecasting capabilities where 
these factors are known. 

3 Results - Afghanistan 

3.1 Drought risk related country characteristics 

3.1.1 Introduction to the country 
Afghanistan is a large, mountainous country in South-Asia. The Hindu Kush Mountains, 
running northeast to southwest across the country divide it into three major regions: the 
Central Highlands, the Southwestern Plateau, and the Northern Plains area. Kabul is the 
capital and largest city of the country, located in the province of Kabul (International Business 
Publications, 2013; Figure 3.1). The population has been significantly increasing over the past 
two decades, reaching 34.66 million people in 2016 (World Bank Country Profile Afghanistan). 
An overview of the spatial variation of the population density (total and rural population) 
between the districts can be viewed in Figure 3.2. Table 3.1Table 3.1 shows an overview of 
relevant country characteristics. 
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Figure 3.1 Map of Afghanistan (source: Wikipedia). 
 
 
Table 3.1 Afghanistan country characteristics 

Geography 
 Total Area 652,230 km2 

Land 652,230 km2 

Water  

Highest Elevation 7,492 m (24,580 ft) 

Land Use  
Arable 15% 

Permanent cropland 0.28% 

Other 84.99% (2016-17) 

People  
Population 34.66 million (2016) 

Population Growth Rate 2.7 % 

Economy  
GDP per capita (PPP) 596.30 US Dollar 

  

Hydrology  
Average rainfall (country average) 250 mm per annum 

 
 

https://www.google.com/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjq9diSoI_bAhXEShQKHWL7DVQQjRx6BAgBEAU&url=https://nl.wikipedia.org/wiki/Bestand:Un-afghanistan.png&psig=AOvVaw3OHCyitEi8hAouhvFlu4wQ&ust=1526732558447482
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Figure 3.2 Total population (top) and rural population per province in Afghanistan (source Deltares, 2016). 
 
Afghanistan is still a conflicted zone and the deteriorating security continues to have a 
negative impact on the livelihood, business confidence, and economic activity. In the past 
decade we can observe big fluctuations in its economic growth, which was busted by the 
international aid and the goods and services that the troops consumed. The drawdown of 
international troops had an impact on the economic performance, slowing growth down from 
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14% in 2012 to less than 2% in 2014 and 2015.8 In 2016 there has been a slight improvement 
as the growth rate has increased from 1.1 % in 2015 to 2.2 % in 2016, mainly due to the 
strong growth of the agricultural sector.9 
 
The agricultural sector, including livestock and related activities, represents 21% of the GDP 
(Figure 3.3Figure 3.3)10, but given its high importance for the livelihood of the predominant 
rural population in the country (72% of the population), the sector represents the backbone of 
Afghanistan’s economy. In 2011/12 for example, agriculture provided income for nearly half of 
the households in the country, was the main source of income for 30% while employing 40% 
of the total workforce.11 
 
Of Afghanistan’s land area of 65 million hectares, only 15% corresponds to arable land (Table 
3.2Table 3.2); most of the country is comprised by mountains and deserts and the continental 
climate is predominantly arid or semi-arid, receiving only 400 mm of rain per year for the 
cultivable lands. Therefore, irrigation is the base of Afghanistan’s agriculture where it 
represents 26% (Table 3.2Table 3.2)12 of the agricultural land. This is especially true in the 
mountainous areas, where agriculture centres around rain-fed and mountain spring irrigated 
lands with wheat being the predominant crop.13 The irrigation is sourced from snowmelt in the 
high mountains in the spring and summer months. In the mountainous areas in eastern 
Badghis and western Hirat, there is an extensive belt of primarily rain-fed land on which most 
agricultural activity takes place, estimated at 90% and 60%, respectively, for the two 
provinces (Bhattacharyya et al., 2004). 
 

Figure 3.3 Sectorial Contribution as % of GDP 2016/2017 (*Excluding Opium). Source: Central 
Statistics Organization, Statistical Yearbook 2016-17 – National Account. 
                                                   

8 https://www.imf.org/external/np/country/notes/afghanistan.htm 
9 http://www.worldbank.org/en/country/afghanistan/publication/afghanistan-development-update-may-2107 
10 http://cso.gov.af/en/page/1500/4722/2016-17 
11 http://documents.worldbank.org/curated/en/245541467973233146/pdf/AUS9779-REVISED-WP-PUBLIC-

Box391431B-Final-Afghanistan-ASR-web-October-31-2014.pdf 
12 http://cso.gov.af/en/page/economy-statistics/economy/agriculture 
13 http://documents.worldbank.org/curated/en/245541467973233146/pdf/AUS9779-REVISED-WP-PUBLIC-

Box391431B-Final-Afghanistan-ASR-web-October-31-2014.pdf). 
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Table 3.2 Agricultural Land use 2016-17. Source: Central Statistics Organization, Agricultural 
Statistics 2008-2016 
Land use 2016-17 

 Thousand 
Hectares 

% of agricultural 
land per use 

Total land area 65,223  
Agricultural area (a+b+c+d) 9,610 (15% of total land) 

a - Forests and woodland 1,781 19% 
b-Fallow land 4,228 44% 
c-Irrigated crops area 2,457 26% 
d- Cultivated rain fed area 1,144 12% 

3.1.2 Hydrology and water resources 
Afghanistan has an arid to semi-arid climate. Rainfall in Afghanistan is very scarce, and 
mainly only affects the northern highlands. Most of the annual precipitation occurs in winter 
and spring from Jan to April. Rainfall in the more arid lowlands is rare and can be very 
unpredictable14. The average annual precipitation (rain and snow) is approximately 250 mm; 
and varies from 60 mm in the south-western parts of the country to 1200 mm in the north-
eastern Hindu Kush Mountains (Bhattacharyya et al., 2004). Afghanistan receives snow 
during winter, providing base flow for numerous rivers, lakes, and streams, most of which 
flows into neighbouring countries. Currently, about two-third of the water generated in 
Afghanistan drains to neighbouring countries (Pakistan, Iran, Tajikistan, Uzbekistan and 
Turkmenistan). 
 
Afghanistan has 5 major river basins (Figure 3.4Figure 3.4): 
• Endorheic Aral Sea basin, including the Panj and Amu Darya Rivers; 
• Endorheic Karakum Desert with Harirud and Murghab Rivers; 
• Endorheic Sistan basin with Harut, Farah, Helmand and Ghazni Rivers; 
• Indus River basin flowing into Arabian Sea with the Kabul River; and 
• Endorheic Northern basin with Shirin Tagab, Sare Pul, Balkh and Khulm Rivers. 
 
Although Afghanistan is located in a half desert-like environment, it is still rich in water 
resources mainly due to the series of high mountains such as Wakhan, Hindu Kush and 
Baba, which are covered by snow. The annual per capita water availability is approximately 
2500 cubic meters, which is comparable with other countries of the region15. More than 80% 
of the irrigation water from Afghanistan comes from river and streams (surface water) and the 
main supply for surface water is derived from precipitation and seasonal melting of snow and 
glaciers in the highland areas (Habib, 2014) . 
 
In the early 2000s the potential of water resources for the country was estimated at 75 billion 
cubic meters (BCM), of which 55 BCM correspond to surface water and 20 BCM reflect 
groundwater resources. The annual volume of water used in irrigation was estimated at 20 
BCM, nearly 85% of which came from rivers and superficial streams, while 15% was derived 

                                                   
14 UNDP Climate Change Country Profiles: 

https://digital.library.unt.edu/ark:/67531/metadc226769/m2/1/high_res_d/Afghanistan.hires.report.pdf 
15 IWMI Working paper 49. Pakistan Country Series No. 14. Water Resourecs Management in Afghanistan: the issues 

and options. https://cropwatch.unl.edu/documents/Water%20Resource%20Issues%20In%20Afghanistan.pdf 
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from groundwater extraction (alluvial groundwater aquifers, springs, and shallow and deep 
wells). However, a more recent assessment of water resources shows that Afghanistan has 
4.4 million ha of potentially irrigable land, but to develop this potential would require 
significant new investment in infrastructure and agreements with the downstream countries 
(World Bank, 2014). Moreover, a qualitative assessment carried out in the early 2000s shows 
that Afghanistan's water resources are still largely underused (Table 3.3Table 3.3). Recent 
data from the Central Statistics Organization of Afghanistan shows that at present the annual 
freshwater withdrawal is 43% of the total internal resources available16 
 
 
Table 3.3 Estimated Surface and Groundwater balance (BCM per year). Source: International Water 
Management Institute, 2002. 
 Estimated Surface and Ground Water Balance (BCM per year) 
Water resources Potential Present Balance 
Surface water 57 17 40 
Groundwater 18 3 15 
Total 75 20 55 
 

 
Figure 3.4 Afghanistan major river basins (Deltares, 2016) 
 
Many parts of Afghanistan, with the exception of north-eastern highlands, are facing frequent 
droughts. From 21 wetlands in Afghanistan, three are of international importance. Due to the 
widespread degradation of natural resource, these wetlands have almost completely dried up, 
causing trans-boundary problems. Moreover, less than 20% of Afghan people have access to 
safe water, which is worsened by the severe, historic drought that the country has 
experienced (Deltares, 2016). 

3.1.3 Historic droughts 
Deltares (2015) carried out a multi-hazard risk assessment (including droughts) for 
Afghanistan for the World Bank. Meteorological drought was quantified based on the EU-
WATCH precipitation dataset from 1959-1998. Figure 3.5Figure 3.5 shows a time series of 

                                                   
16 http://cso.gov.af/en/page/economy-statistics/economy/agriculture 
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the annual precipitation sum for the whole of Afghanistan. It also shows the moving average 
(Two year window) and the average over the entire period. It follows from this figure that over 
a period of 40 years (1959-1998) three nation-wide meteorological droughts occurred: 1969-
1970, 1982-1985 and 1996-1998. 
 
SPI maps and values are available per catchment. As an example, we show the SPI maps for 
the dry years 1970 and 1998, when the entire country was in a drought (Figure 3.6). Figure 
3.7 shows two examples of regional droughts: 1962 was a dry year for the Southwest, and 
1968 was a dry year for some catchments in southern Afghanistan. The 1968 map also 
shows that the North can be very wet while the South is dry (Deltares, 2016). 
 
A time lag between meteorological drought and drought losses was observed. The reported 
losses in 1971-1973 may stem from the lack of precipitation in 1969-1970. Likewise, the 
reported losses in 2000-2002 may stem from the lack of precipitation starting in 1996-1998. 
An explanation for this time-lag may be found in over-year storage capacity in reservoirs. 
Another explanation could be that some of the reported losses stem from water shortage from 
groundwater wells, in which water levels drop after a few years of precipitation deficit, and/or 
that farmers have some financial reserves to survive one or two drought years (Deltares, 
2016). 
 

 
Figure 3.5  Annual and moving average precipitation over all Afghanistan river basins compared to average 
precipitation over time. Source: Deltares, 2016. 
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Figure 3.6 SPI1 maps of two dry years with a large extent: 1970 and 1998 
 

  
Figure 3.7 SPI1 maps of a dry year in the South-West (1962, left) and a dry year in the South (1968, right) 
 
Droughts registered by EM-DAT and Reliefweb are shown in Figure 3.8Figure 3.8. It is 
striking that the meteorological drought in the period 1982-1985 is not registered by these 
organisations. This may be due to the war in Afghanistan during that period (1979-1989). In 
more recent years, several sources (EM-DAT, Reliefweb, etc.) have reported severe droughts 
from 1998-2006, 2008-2009, and another in 2011 (Figure 3.8Figure 3.8). These frequent 
droughts put the country in a difficult position, which is worsened by dry spells that have 
serious consequences for food security. 
 

 
Figure 3.8 - Drought events in Afghanistan recorded by EM-DAT, Reliefweb, and others. 
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3.2 Assessment of available drought hazard models 

3.2.1 Comparison and validation at the country scale 
For the relevant drought hazard indices obtained from available global datasets (section 
2.2.1), graphs were produced of the percentage-area of the country experiencing drought 
conditions for three drought levels: moderately dry (index value below -1), severely dry (index 
value below -1.5) and extremely dry (index value below -2). All graphs are shown in Appendix 
A1. In these graphs, the registered droughts from EM-DAT are plotted as well. Based on the 
graphs, the overlap of global drought hazards with reported droughts was assessed as well 
as the comparability of datasets and indices. SPI1 was left out of the comparison because the 
results are relatively spikey and could not be compared to drought events at a yearly time 
scale. 
 
Table 3.4Table 3.4 gives an overview of the results for Afghanistan, showing that the reported 
droughts are generally well detected by most drought hazard indices from the global datasets, 
mainly the indices SPI3 (except for the Global Land Surface dataset), SPEI3, and SPEI12 
showed pronounced drought signals in the six years with reported drought events. 
 
For the years with registered drought events, the comparability of the drought hazards shown 
by the different dataset-index combinations was high. In the 30 year period that was 
assessed, the global models indicated nine other drought years that were not registered as 
drought events by EM-DAT. False alarm rates of individual dataset-index combinations range 
between 14% (WaterGap-SSFI) to 63% (GLS-SPI3). For the drought years detected by the 
drought hazard indices from the global datasets, the comparability of drought hazards was 
much lower. 
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Table 3.4 Results of the country-scale assessment of globally available drought hazard dataset-index 
combinations. In the table, years with registered drought events are shown in black and years without 
registered drought events but drought hazards shown by the dataset-index combinations, are shown in red. 
Corresponding graphs can be found in Appendix A1. 
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3.2.2 Validation with local data 
For Afghanistan, nine river discharge measurement stations were available for use with 16.6 
months being the average length of the time-series. As shown in Figure 3.9Figure 3.9 the 
observation stations available for use were not equally distributed over the country but 
centred towards the northeast. As such, the evaluation should not be interpreted as being 
representative for the whole country. 
 
Figure 3.9Figure 3.9 shows for both global models evaluated the results for the two 
performance metrics taking into account all available stations. PCR-GLOBWB shows a 
median correlation coefficient value of 0.48 when using all stations, compared to a value of 
0.51 for WaterGAP. For PCR-GLOBWB thecorrelation ceofficient values range from 0.08 up 
to 1. For WaterGAP we find correlation coefficient values that range from 0.23 up to 1. 
Median percent bias for PCR-GLOBWB in Afghanistan is 108.0%. Median percent bias 
values (62.9%) are lower with the WaterGAP output. 
 

 
Figure 3.9 Spatial distribution of GRDC measurement stations available for use in Afghanistan and their 
performance values for the percent bias and the Pearson correlation coefficient. 
 
Figure 3.10Figure 3.10 shows the hydrograph for a selected discharge observation station in 
Afganistan with 21 months of data available. As shown in the graph, both models represent  
the observed seasonal and interannual variability relatively well. Correlation coefficient values 
for this particular station are 0.72 (PCR-GLOBWB) and 0.47 (WaterGAP).  Although 
WaterGAP is able to reflect the yearly peaks in the hydrograph relatively well, the timing is a 
bit off, which results in a lower correlation coefficient value compared to that of PCR-
GLOBWB. Percent bias values are within the moderate range at 42.4% for PCR-GLOBWB 
and 68.4% for WaterGAP. Whereas PCR-GLOBWB misses the yearly peaks, it represents 
the yearly low-flow conditions relatively well.  On the othe hand, WaterGAP is too early with 
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its peak and too low in its low-flow estimates. Hydrographs for all other stations in 
Afghanistan are available as a supplement to this document. 
 

 
Figure 3.10 Hydrograph visualizing the performance of PCR-GLOBWB and WaterGAP relative to the 
historical observations from GRDC. 
 

3.2.3 ENSO analysis 
Figure 3.11Figure 3.11 visualizes the median share of total land area in drought conditions for 
Afghanistan during El Niño (EN), La Niña (LN), and Neutral (N) years using the different 
drought indicators, various accumulation time-periods and the inputs from both PCR-
GLOBWB and WaterGAP. Results for both the SPI and SPEI indicator show that, at shorter 
accumulation times (e.g., 1, 3 months), the median area in drought in Afghanistan is 
significantly higher during LN years, compared to EN and N years. For longer accumulation 
time-periods, under the SPI and SPEI drought indicators, this signal shifts with a significantly 
higher median share of land area in drought during EN years, compared to LN and N years. 
For the SSFI (accumulation period 1) the two models indicate an opposite signal. Whilst the 
median share of total land area in drought conditions is relatively lower during LN years 
compared to EN and N years, the PCR-GLOBWB shows an opposite signal. The link 
between ENSO and droughts in Afghanistan has been studied on a very limited basis. As 
such, we cannot compare our results with previous studies. Studies performed on the 
correlation between ENSO and droughts in adjacent regions show a positive relationship 
between El Niño and hydrological droughts, using the SSFI index in Iran (Hosseinzadeh et 
al., 2012) 
 
Figure 3.12Figure 3.12 shows, in a spatially explicit manner for Afghanistan, those areas 
experiencing a significant increase or decrease in frequency of drought months (SSFI < -1) 
when comparing the EN years with non-EN years (LN and N). Spatial patterns in anomalies in 
drought frequency months are shown to be roughly similar between PCR-GLOBWB and 
WaterGAP. During LN years, a vast majority of the land area indicates a significant decrease 
in the frequency of drought months, compared to non-LN years. During EN years both models 
indicate that whilst in the southwestern part of the country drought frequency is mostly 
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elevated compared to non-EN years, drought frequency is significantly lower compared to 
non-EN years in the north-eastern part of the country. 
 
 

 
Figure 3.11 Area in drought in Afghanistan during El Nino (EN), La Nina (LN), or neutral years using the SPI, 
SPEI, and SSFI drought indicator. The open symbols show the results for WaterGAP while the filled symbols 
show the results for PCR-GLOBWB. Different colors indicate the different accumulation periods used: 1 
month (black), 3 months (blue) and 12 months (red). 
 
 
Despite the significant anomalies in drought frequency and the share of total land area 
exposed to drought between EN/LN and non-EN/non-LN year’s correlations between drought 
indicators and the continuous JMA SST values seem to be relatively low, with correlation 
coefficient values around 0.4 for WaterGAP and 0.5 for PCR-GLOBWB. Figure 3.13 shows 
the spatial distribution in Pearson correlation values between the continuous JMA SST values 
and the SSFI-1 for both WaterGAP and PCR-GLOBWB. Moreover, it visualized at which lag-
time the highest correlation was found. Whereas for the largest part of the total land area of 
Afghanistan lag-times of 6-9 months are shown to give the best correlation coefficient for 
PCR-GLOBWB, WaterGAP shows optimal lag-times that are significantly lower (0 – 3 
months), especially for the southern and south-eastern part of the country. 
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Figure 3.12 Spatial distribution of area with a significant increase, decrease or no change in frequency of 
drought months when comparing the El Niño years with the non El Niño years and the La Niña years with the 
non La Niña years. Left sub-plots show the results for PCR-GLOBWB, right sub-plots show the results for 
WaterGAP. 
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Figure 3.13 Spatial distribution of optimal Pearson correlation coefficient between continuous JMA SST 
values indicating ENSO conditions and the SSFI-1 drought indicator. Left sub-plots show the optimal 
correlation coefficient, right sub-plots show the lag-time that corresponds to the best correlation coefficient 
found. Results for both PCR-GLOBWB and WaterGAP are visualized. 
 
 

3.3 Assessment of drought impact and risk platforms and datasets 

3.3.1 Maps of overall drought impact and risk 
Country scale maps are presented that are based on the Global map of drought risk from 
JRC (Carrão et al., 2016) (Figure 3.14). Although the presented indices of drought hazard, 
exposure, vulnerability, impact and risk are dimensionless factors based on an aggregation of 
information and data, they provide a good first impression of the drought risk situation in the 
country. For Afghanistan drought hazard and exposure are high in large parts of the country, 
which is in line with the assessments of drought hazards with global models and the 
descriptive information of the country characteristics. Vulnerability is high in the whole 
country, which is mainly caused by the fact that Afghanistan is in a conflicted zone. Also, 
Afghanistan has a low GDP per capita. The combination of relatively high levels of hazard, 
exposure and vulnerability in large parts of the country, leads to high drought impact and risk 
levels in the maps produced by the JRC. For an assessment of the spatial variability in the 
maps, a detailed study including the extensive collection of impact data is required. 
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Figure 3.14   Maps from the Global map of drought risk developed by JRC showing the following 
indices: drought hazard (A), exposure (B), vulnerability (C), impact (exposure x vulnerability) (D), and risk 
(hazard x impact) (E). 

3.3.2 Drought impact on population 
The IWMI data portal provides maps with information related to impact drought impact on 
population for all countries in the world: per capita mean annual river discharge, agricultural 
water crowding (population per m3 precipitation) with respect to mean annual precipitation, 
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and agricultural water crowding with respect to mean annual river discharge (population per 
m3 discharge) (Figure 3.15). The spatial resolution of 0.5o may be too coarse for a country 
with complex orography and remotely sparse villages such as in Afghanistan. However, the 
maps show that the annual discharge per person is generally low and in some areas very low 
in Afghanistan. The amount of people that are dependent on one m3 precipitation and one m3 
discharge water is in general medium to high, except for some areas in the middle-west and 
northern regions of the country. 
The maps show some comparability with the drought hazard map from JRC, but are not as 
comparable with the other exposure and impact map from JRC (Figure 3.14). For an 
assessment of the spatial variability in the maps, a detailed study including extensive 
collection of impact data is required. Impact data could consist of local data of actual 
reduction of water availability to the population and agriculture during historical drought 
periods as well as the effects of such levels of water shortage on economic revenues across 
various sectors. 
 

 
Figure 3.15 Maps providing impact (exposure/vulnerability) to population available from the IWMI water 
data portal, from left to right: per capita mean annual river discharge (m3 per person); agricultural water 
crowding with respect to mean annual precipitation (population m3); agricultural water crowding with respect 
to mean annual river discharge (population m3). 

3.3.3 Impact to agriculture 
Maps on historical agricultural drought impact are provided by the online Aqueduct Water 
Risk Atlas (baseline water stress with respect to agriculture) and by the FAO-platform 
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“Agricultural Stress Index and precipitation anomalies” (Figure 3.16). However, due to the 
difference in temporal aggregation periods, the maps cannot be compared. The spatial 
patterns of baseline agricultural water stress in the Aqueduct map show similarities with the 
impact map from JRC (Figure 3.14). The FAO-platform provides a map with Agricultural 
Stress Index (ASI; % cropland affected by drought) for each year since 1985. Table 3.5 
provides an overview of the years with coverage of approximately 25% the country or more 
with high to very high ASI levels and matching drought years based on registered droughts 
and the global drought hazard models (see section 3.2.1). According to the ASI maps, 10 out 
of the 31 years in the monitoring period show large areas with high levels of agricultural 
drought stress. Four out of these 10 years were listed as registered drought years. Four other 
years of these 10 years showed significant drought hazard by the global models. For an 
assessment of the spatial variability in the maps a detailed study including extensive 
collection of impact data is required. Impact data could consist of local data of actual 
reduction of water availability to agriculture during historical drought periods as well as the 
effects of such levels of water stress on economic revenues. 
 

 
Figure 3.16 Maps on historical agricultural drought impact. Left map from Aqueduct Water Risk Atlas 
providing baseline water stress with respect to agriculture; right: map from FAO-platform “Agricultural Stress 
Index and precipitation anomalies” for a relatively dry year. 
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Table 3.5 Years with high ASI values during first growing season covering 30% or more of the 
country (FAO platform17) compared to registered droughts and drought hazards determined with global 
models (see section 3.2.1). 

 

3.3.4 Impact on hydropower 
The online Aqueduct Water Risk Atlas provides maps with baseline water stress with respect 
to electric power (Figure 3.17), which is (almost) identical to the map with baseline stress with 
respect to agriculture. For Afghanistan it can be observed that for a large part of the country 
the stress level is relatively high. The spatial patterns in the map are in line with the map of 
overall drought impact from JRC (Figure 3.14). For a more thorough analysis of the drought 
impact to hydropower, a comparison with local impact data should be performed. Such impact 
data could consist of locations of hydropower plants and the actual reduction of water 
availability (e.g. lowered reservoirs levels, reduced river discharge) to these plants during 
historical drought periods as well as the effects of such levels of water shortage on produced 
electricity and economic revenues. 
 

 
Figure 3.17  Map from Aqueduct Water Risk Atlas providing baseline water stress with respect to 
electric power. 
 

                                                   
17 http://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&type=15&code=AFG 
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3.3.5 Impact to the overall economy 
A map presenting a socio-economic drought vulnerability index is available from the IWMI-
portal and a default baseline water stress map is available from the Aqueduct Water Risk 
Atlas (both maps in Figure 3.18). The IWMI map shows a high level of socio-economic 
vulnerability but does not provide any spatial differentiation at the sub-national level. This is 
more or less similar to the vulnerability map from JRC (Figure 3.14), although that map shows 
some spatial differentiation with lower vulnerability in the eastern part of the country. It can be 
observed that for a large part of the country the default water stress level is relatively high, 
which is (almost) identical to the maps presenting baseline stress with respect to agriculture 
and electric power. The spatial patterns in the map are in line with the map of overall drought 
impacts from the JRC (Figure 3.14). 
 

 
Figure 3.18   Maps with drought impact to the overall economy from different online platforms: Socio-
economic drought vulnerability index from IWMI-portal (left); Baseline Water stress – Default form Aqueduct 
Water Risk Atlas (right). 

3.3.6 Impact on municipal and industrial water needs 
Various maps are available at the Aqueduct Water Risk Atlas that related baseline water 
stress to industrial sectors (mining, food & beverage, chemicals, semi-conductor, oil and gas, 
mining, construction materials, textiles). However, there does not seem to be any variation in 
base line water stress for the different sectors. It is unclear if any spatial information of the 
impact sectors was available for Afghanistan at the sub-national scale. Also, no independent 
drought impact information for these industrial sectors was available for the case study 
countries during our research. Hence, no further assessment of these impact maps was 
performed. 

3.4 Evaluation of forecasting and monitoring systems 
 
Droughts are a frequently occurring natural hazard in Afghanistan, whose impacts include 
significant loss of agricultural yields, severe famine and large migrations of population. The 
multi-year droughts of the 1970s, 2000, 2006 and 2008 are examples of severe droughts 
recorded in recent decades in Afghanistan.  Drought is, however, only one of many natural 
disasters (e.g. floods, landslides, avalanche and earthquake) that hit this mountainous 
country every year. Still, droughts affect more people than any other natural disaster. The 
droughts of 2000, 2006, and 2008 were reported to have affected 2.6, 1.9 and 0.28 million 
people, respectively (Government of Afghanistan, 2011). 
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3.4.1 Current drought monitoring and forecasting 
The Government of Afghanistan released a Strategic National Action Plan (SNAP) for 
Disaster Risk and Reduction in 2011. In 2012, the National Disaster Management Low was 
enacted to establish a National Disaster Management Commission (NDMC), and its 
secretariat Afghanistan National Disaster Management Authority (ANDMA) (IFRC, 2013).  
NDMC and ANDMA are the highest level entities for regulation and coordination of disaster 
preparedness, response, and enforcement in the country. Separate provincial and district 
level commissions were also established to effectively implement decisions of NDMC. In 
addition, the National Disaster Risk Reduction Platform (NDRRP) was established aimed at 
collaboration of disaster risk reduction activities with national/international non-governmental 
organizations and civil societies, and to achieve synergy of resources and efforts (ADB, 
2014). 
 
Despite records of frequent and devastating drought events and existing disaster risk 
management instruments, Afghanistan seriously lacks the necessary infrastructure (GWP-SA, 
2014), resources and well developed drought preparedness and mitigation planning for the 
country. Only recently, USAID has extended the coverage of the Famine Early Warning 
Systems Network (FEWS NET) 18 to Central Asian countries including Afghanistan. Currently 
available FEWS NET data products for Afghanistan include several drought related products, 
such as the 6-day precipitation forecast (based on NOAA GFL), dekadal anomaly of 
precipitation, monthly anomaly of evapotranspiration, daily anomaly of snow depth, NDVI 
(based on MODIS), etc. These data products have not yet been operationally used for 
decision making and providing early drought warnings in the country. 
 

3.4.2 Available operational systems 
 
Currently, the following data products are available from FEWS NET – CA for Afghanistan: 
• Agricultural products 
• eMODIS NDVI C6 
• Evapotranspiration (ET) 
• Irrigated areas 
• Rainfall products 
• Snow cover products 
• Temperature products 
 
Table 3.6Table 3.6 provides an overview of the main characteristics of the Famine Early 
Warning Systems Network for Central Asia. 
 
The agricultural product contains two maps of agricultural lands in Afghanistan based on 
1993 and 2001, and one map of agricultural range lands based on 1993. The eMODIS NDVI 
C6 product includes maps of decadal (10-day average) values and anomalies of NDVI, 
agricultural area, rain fed agricultural area and rangeland area. The ET product contains 
monthly and seasonal evapotranspiration anomalies (Figure 3.19Figure 3.19). The irrigated 
area product includes annual irrigated areas per major river basins and provinces, which are 
derived from the eMODIS products. 
 

                                                   
18 FEWS NET – CA (2017): https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan; Accessed on 

02-Oct-2017. 
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The rainfall product includes a 6-day rainfall forecast (Figure 3.20Figure 3.20), decadal 
rainfall and anomalies, and decadal cumulative rainfall and anomalies. The snow cover 
product contains three different data maps: daily snow depth and anomaly, daily snow water 
equivalent and anomaly, and 8-day snow cover (based on MODIS) and anomaly. Similarly 
the temperature product includes decadal daily mean temperature and anomalies (Figure 
3.21Figure 3.21). 
 
The rainfall product is the only forecast product currently available. It gives a daily rainfall 
forecast for up to a 6-day lead time (forecast horizon) and is updated every day. All other 
products are monitoring products, which are available up to the last day, decade, month or 
season, except the agriculture products. The agricultural products are based on 1993 and 
2001 with no updates being available. More conventionally used drought indices, such as the 
SPI and Soil Water Indices are not available for Afghanistan as of yet. Currently these 
products are only available for Africa. 
 
 
 
Table 3.6 Characteristics of drought monitoring and forecasting systems available in Afghanistan. 
Characteristics Famine Early Warning Systems Network - Central Asia 
Monitoring Yes 
Forecasting Yes 
Region/countries/areas Central Asia, includes five countries, including Afghanistan 
Spatial resolution Various depending on the data products. Some products are also 

available per major river basins and provinces. 
Datasets used NOAA GFS, MODIS, etc. 
Software and tools used Various, including GCMs, and MODIS algorithms/tools 
Indices presented 6-day precipitation forecast, decadal anomaly of precipitation, 

monthly anomaly of evapotranspiration, daily anomaly of snow 
depth, NDVI, etc. 
 

Reflective of impacts Not available 
Forecast horizon 6-Day (The 6-day precipitation forecast is the only forecast product 

currently available (others are monitoring products). 
Update frequency Daily (for the 6-day precipitation forecast) 
Accessibility of forecast Easy, open access (only maps) 
Method of access Directly through the Internet 
Procedure / steps Final products can be downloaded directly 
Resources required Internet access 
Post-processing None 
Hit rate (estimation) Not known 
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Figure 3.19  Seasonal evapotranspiration anomaly (relative to median of the same period from 2003 to 2015) 
available from FEWS NET – CA for Afghanistan19 
 

                                                   
19 FEWS NET – CA (2017): https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan; Accessed on 

08-Oct-2017. 

https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan
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Figure 3.20 6-Day Rainfall Forecasts currently available from FEWS NET – CA for Afghanistan20 
 

                                                   
20 FEWS NET – CA (2017): https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan; Accessed on 

08-Oct-2017. 

https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan
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Figure 3.21 Decadal daily mean temperature and anomalies from FEWS NET – CA for Afghanistan21 
 
 
 
  

                                                   
21 FEWS NET – CA (2017): https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan; Accessed on 

08-Oct-2017. 

https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia/Afghanistan
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3.4.3 Predictability of droughts and potential for improved monitoring and forecasting 
 
Afghanistan is characterised by large climate variability. While the majority of the country is 
semi-arid, the climate varies from arid in the southern part to moderately humid in the high 
mountain ranges (Qureshi, 2002). A recent study (Hoell et al., 2015) over Southwest Asia, 
which includes Afghanistan, showed that the long-term trend of sea surface temperatures 
(SST) are linked to the anti-cyclonic circulation over the region, and that has been shown to 
decrease precipitation and increase temperature in the region. An earlier study on drought 
assessment (Muhammad et al., 2011) in northern Afghanistan (part of the Amu Darya Basin) 
showed good potential of the Palmer Drought Severity Index (PDSI) method (Palmer, 1965) 
by modifying it to account for snow storage and melt. Similarly, a recent study (Nasery, 2017) 
in several sub-basins of the Kabul basin showed reasonable accuracies in long-term 
hydrological simulation using the HEC-HMS model with detailed snowmelt routine. Although 
the drought related literature is limited for Afghanistan, results of these studies are promising 
for developing drought monitoring/forecasting systems. Increasingly available meteorological 
forecasts, remote sensing products and public domain hydrological models will help facilitate 
such development.  
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4 Results - Colombia 

4.1 Drought risk related country characteristics 

4.1.1 Geography and population 
Colombia is located in the northwest of South America. It has a total area of 1,141,750 km2: 
1,038,700 km2 of land and 100,210 km2 of marine area. Colombia is an equatorial country 
with a climate determined by trade winds, humidity and altitude. In most of the country, there 
are two rainy seasons – from April to June and from August to November – and two dry 
seasons. Table 4.1 summarizes some characteristics of the country. 
 
The geography of Colombia is characterized by its six main natural regions (Figure 4.1 - a): 
the Andes mountain range region in the centre of the country, the Pacific coastal region 
towards the west, the Caribbean coastal region in the north, the Orinoquia region in the east, 
the Amazon Rainforest region in the south, and the insular area, which is comprised of 
islands in both the Atlantic and Pacific oceans. 
 
Colombia has a total population of about 46.5 million with an average population density of 
40.3 inhabitants/km2. However, the population is not distributed homogenously (Figure 4.1b). 
Most of the population is concentrated in the Andean highlands and along the Caribbean 
coast where the main urban centres are located. Traditionally a rural society, movement to 
urban areas was very heavy in the mid-20th century and Colombia is now one of the most 
urbanized countries in Latin America. The urban population increased from 31% of the total in 
population in 1938 to nearly 75% by 201422. The Orinoquia and Amazon regions, which cover 
about 54% of Colombia's area, contain less than 6% of the population. 
 
Table 4.1 Characteristics of Colombia 

Geography 
 Total Area 1,141,750 km2 

Land 1,009,500 km2 

Water 132,250 km2 

Highest Elevation 5,700 m 

People  
Population 46,653,419 

Population Growth Rate 0.9% 

Economy  
GDP per capita (PPP) $14,130 (est. 2016) 

  

                                                   
22 DANE, 2010. 

https://en.wikipedia.org/wiki/Natural_regions_of_Colombia
https://en.wikipedia.org/wiki/Andes
https://en.wikipedia.org/wiki/Pacific_Coast
https://en.wikipedia.org/wiki/Amazon_Rainforest
https://en.wikipedia.org/wiki/Insular_Region_(Colombia)
https://en.wikipedia.org/wiki/Andean_Region_of_Colombia
https://en.wikipedia.org/wiki/Caribbean_Region_of_Colombia
https://en.wikipedia.org/wiki/Caribbean_Region_of_Colombia
https://en.wikipedia.org/wiki/Urbanization
https://en.wikipedia.org/wiki/Urbanization
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a) Natural regions 

 
b) Population density distribution 

Figure 4.1 - Colombia population density and natural regions. 

4.1.2 Hydrology and water resources 
The national meteorology, hydrology and environmental studies institute (IDEAM) divides 
Colombia into five main hydrographic regions as shown in Figure 4.2. These areas have 
considerable differences in climate conditions, population density and land use23. 
 
The Magdalena – Cauca region concentrates the large majority of Colombian population and 
economic activities. Approximately 80% of the Colombian population lives in this region and it 
produces 85% of the GDP. The Magdalena River is considered to be the main river in the 
country. It has a length of approximately 1,558 km with1,290 km of it being navigable. It is 
used to transport goods from the port in Barranquilla in the Caribbean Sea to points inland. 
The main tributary of the Magdalena River is the Cauca River with both rivers draining parallel 
from south to north. The annual average rainfall is approximately 2,000 mm in the upper parts 
of the basin with some areas in the centre of the basin having higher average annual 
precipitation totals running between 3,000 and 5,000 mm/year. The upper and central part of 
the basin is used to provide water to the cities and villages, irrigation interests and for 
hydropower production. The lower part of the basin consists of several interconnected 
swamps that play an important role in regulating the flows of the river during flooding 
periods24. 
 
The Orinoco region is located in the eastern part of Colombia and corresponds to a large 
plains region. Orinoco has large rainfall variability, ranging from 1,500mm/year in the northern 
part, to 6,000 mm/year in the west given its proximity to the Andean region. On average, 
rainfall ranges between 2,000 and 3,000 mm/year. 
 

                                                   
23 Atlas climatológico de Colombia. IDEAM 2010. 
24 IDEAM – Estudio nacional del agua 2010 – capitulo 3 
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The Amazonas basin is located in the south part of Colombia and corresponds to the tropical 
forest that covers one third of the country. Annual precipitation varies approximately between 
3,000 and 4,500 mm/year. 
 
The Pacific region has an area of approximately 76,500 km2. The Pacific has the highest 
average annual precipitation in Colombia, at approximately 6,000 mm/year with some records 
of up to 12,000 mm/year. It has more than 200 rivers that drain from the western mountainous 
chain to the Pacific Ocean in the west coast of Colombia. The rivers in this region are short 
and have large flow discharge rates. 
 
The Caribe basin has the lowest annual average rainfall, which varies between 500 and 2,000 
mm/year. The lowest annual rainfall occurs towards the north – in the Alta Guajira region- and 
the highest records are found in the southern parts of the country. 

 

 
Figure 4.2 Main Colombian hydro basins. Source: IDEAM 
 
Water demand is mainly concentrated in the Magdalena – Cauca and Caribe regions (Figure 
4.4) as a result of the population distribution. The highest water demand per year is observed 
around the large urban centres of Bogota, Cali and Medellin, where it reached up to 1,000 
million m3/year in 2010. The Orinoquia, Amazon and Pacific regions, which normally have 
abundant water resources have the lowest water demand with less than 20 million m3 per 
year. 
 
According to the Aqueduct Water Risk Atlas (Figure 4.3), Colombia has low baseline water 
stress (equal to the ratio of total annual water withdrawals to total available annual renewable 
supply, accounting for upstream consumptive use). Higher values indicate more competition 
among users and more likely that meteorological and hydrological droughts translate into 
water shortage. 
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Figure 4.3 Baseline water stress (source: Aqueduct Water Risk Atlas) 
 

 
Figure 4.4 Estimated water demand in 2010 aggregating domestic, industrial, agricultural and hydropower 
generation consumption. Source: IDEAM, National water study 2014. 
 

4.1.3 Historical droughts 
According to the EM-DAT Database (Figure 4.5), Colombia experienced droughts having 
significant impacts (affected population) in 1998 and 2015. The event of 1998 is highlighted 
as one of the most severe by IDEAM (2014). This event coincides with the occurrence of the 
strong El Niño registered in 1997-1998. In February 1998, 45% of the territory was under 
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moderately dry conditions and 2% in very dry conditions. The extremely dry conditions areas 
were localized within the Magdalena-Cauca basin. 
 

 
Figure 4.5 Drought events in Colombia recorded by EM-DAT. 
 
IDEAM (2002) conducted an analysis of historical droughts by regions, based on absolute 
SPI3 values, between 1970 and 2000, including the correlation with El Niño events. IDEAM 
identified drought periods when SPI3 < - 0.8 for more than 3 consecutive months. 
 
The Magdalena-Cauca region is highly influenced by Niño events (Figure 4.6Figure 4.6). Two 
extreme droughts, based on the classification used by IDEAM, occurred during the analysed 
period: 91-92 and 97-98. In terms of duration the most prolonged droughts correspond to 82-
83, 91-92 and 97-98. These droughts occurred during strong and very strong Niño years. 
 

 
Figure 4.6 Historical droughts and Oceanic Niño Index (ONI) for the Magdalena-Cauca region. Green bars: 
drought classification; Yellow bars: ONI value, red line: ONI value for very strong Nino events. 
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The 1998 drought affected various sectors of the economy: agriculture, hydropower 
production, water supply, and fluvial navigation. The drought affected the most productive 
regions in Colombia – Magdalena-Cauca, Pacific and Caribe – and caused direct losses of 
US$56 million (10%) and indirect losses of US$502 million (CAF, 2000). 
 
Water supply: Surface water supply systems were affected mainly in the Magdalena-Cauca 
and Caribe regions. Almost the entire Magdalena-Cauca region was under water rationing 
schemes, varying from six hours to two days intervals. Distribution systems were impacted by 
low pressure, which affected communities that occupy the higher areas where the water 
pressure was not enough to ensure the distribution. Higher temperatures increased the water 
demand thereby increasing the water supply issues. 
 
Hydropower production: Almost all reservoirs were affected during the drought period 1997-
98. On average, river discharge into the reservoirs in 1997 was 74.9% of the multiannual 
average. The reduction in hydropower production increased the pressure on the thermal 
power stations, resulting in an increased price of electricity that was charged to the end users. 
 
Agriculture and livestock: according to CAF (2000), the drought caused a severe reduction in 
crop and livestock yields. The direct losses for the agriculture sector are estimated at US$101 
million and the indirect impacts, related to a decrease in exportations and the negative 
economic effects, were estimated at US$124 million. 

4.2 Assessment of available drought hazard models 

4.2.1 Comparison and validation at the country scale 
Utilizing the relevant drought hazard indices from the global datasets available (section 2.2.1), 
graphs were produced for the percent-area of the country experiencing drought conditions for 
three drought levels:  moderately dry (index value below -1), severely dry (index value below -
1.5) and extremely dry (index value below -2). All graphs are shown in Appendix A2. In these 
graphs, the registered droughts from EM-DAT and IDEAM are plotted as well. Based on 
these graphs, the overlap of global drought hazards with reported droughts was assessed as 
well as the comparability of datasets and indices. SPI-1 was left out of the comparison 
because the results are relatively spikey and could not be compared to drought events at a 
yearly time scale. 
 
Table 4.2Table 4.2 gives an overview of the results for Colombia, showing that the reported 
droughts are moderately well detected by most drought hazard indices from the global 
datasets. Only the drought of 1997 was not picked up by the dataset-index combinations 
used in the analysis. Mainly the indices SPI3 (except for the Global Land Surface dataset), 
SPEI3, and SPEI12 showed pronounced drought signals in the six years with the reported 
drought events. The GLS dataset did not show pronounced droughts in the years with 
registered drought events. 
 
In the 30-year period that was assessed, the global models indicated five other drought years 
that were not registered as drought events by EM-DAT or IDEAM. Some of them were strong 
signals (1985-86, 2010, and 2013). False alarm rates of individual dataset-index 
combinations range between 20% (PCR-GLOBWB-SSFI) to 63% (GLS-SPI3). For both the 
years with, and without, registered drought events, the comparability of the different dataset-
index combinations was variable. 
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Table 4.2 Results of the country-scale assessment of globally available drought hazard dataset-index 
combinations. Years with registered drought events are shown in black and years without registered drought 
events, but drought hazards shown by the dataset-index combinations, are shown in red. Corresponding 
graphs can be found in Appendix A2. 
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4.2.2 Validation with local data 
For Colombia, 46 streamflow measurement stations were available for use with an average 
length of 112.7 months for the time-series. As shown in Figure 4.7Figure 4.7, the observation 
stations available for use are predominantly available in the populated areas while the inland 
tropical areas (south-east) are not covered. 
 
 

 
Figure 4.7 Spatial distribution of GRDC measurement stations available for use in Colombia and their 
performance values for the percent bias, and the Pearson correlation coefficient. 
 
Figure 4.7Figure 4.7 shows for both GHMs evaluated the results for the two performance 
metrics taking into account all available stations. Overall, PCR-GLOBWB and WaterGAP 
show a median correlation coefficient value of 0.27 and 0.39, respectively, when using all 
stations. For PCR-GLOBWB these correlation coefficient values range from 0.02 up to 0.77. 
For WaterGAP we find correlation coefficient values that range from 0.02 up to 0.78. Median 
percent bias for PCR-GLOBWB in Colombia is 108% Median percent bias values are lower 
when looking at the WaterGAP output, 62.9%. 
 
Figure 4.8Figure 4.8 shows the hydrograph for a selected discharge observation station in 
Colombia with 120 months of data available. As visualized by the the hydrograph, WaterGAP 
nicely aligns with the observed discharges whilst PCR-GLOBWB shows a structural 
overestimation of its discharge values for this particular station. This is being reflected in the 
percent bias values found for both models for this station: 37.39% for WaterGAP compared to 
222.8% for PCR-GLOBWB. Despite the relatively large differences in absolute discharge 
estimates, both models do show relatively good performance when it comes to the correlation 
coefficient: 0.68 for both PCR-GLOBWB and WaterGAP, indicating that the temporal 
variability of the river discharge is reflected better than the quantity of the river discharge. 
Thus, both models are, in general, equally able in reflecting relative dry and wet episodes and 
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can identify or characterize drought events for this particular location. Hydrographs for all 
other stations in Colombia are available as a supplement to this document. 
 
 
 

 
Figure 4.8 Hydrograph visualizing the performance of PCR-GLOBWB and WaterGAP relative to the historical 
observations at station 310375. 
 
 

4.2.3 ENSO analysis 
Figure 4.9Figure 4.9 visualizes for Colombia the median share of total land area in drought 
conditions during EN, LN, and N years using the different drought indicators, various 
accumulation time-periods and the inputs from both PCR-GLOBWB and WaterGAP. Results 
for the SPI show that it is likely that a higher share of the total land area of Colombia is in 
drought during La Niña (LN)-years, as compared to El Niño (EN) and Neutral (N) years, and 
irrespectively of the accumulation period used to identify drought conditions. Results for the 
SPEI and SSFI show that the two hydrological models show relatively different signals when it 
comes to the median area in drought. Whilst for the SPEI, the PCR-GLOBWB shows a 
relatively higher median share of land area in drought under LN conditions, compared to EN 
and N conditions, WaterGAP shows the opposite signal. For WaterGAP the share of land is in 
drought is said to be relatively higher under EN conditions, compared to LN and N conditions. 
For the SSFI, WaterGAP estimates a relatively higher median share of land area in drought 
under LN years compared to EL and N years, whilst PCR-GLOBWB hints at a relative lower 
share of the land area in drought during the LN years. 
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Figure 4.9 Area in drought in Colombia during El Niño (EN), La Niña (LN), or neutral years using the SPI, 
SPEI, and SSFI drought indicator. The open symbols show the results for WaterGAP while the filled symbols 
show the results for PCR-GLOBWB. Different colors indicate the different accumulation periods used: 1 
month (black), 3 months (blue) and 12 months (red). 
 
Figure 4.10Figure 4.10 shows (in a spatially explicit manner) those areas in Columbia that 
experience a significant increase or decrease in the frequency of drought months (SSFI < -1) 
when comparing the EN years with all other years (non-EN: LN and N), and vice versa.  
Again, spatial patterns in anomalies in drought frequency months show a roughly similar 
pattern between PCR-GLOBWB and WaterGAP. During LN years, a vast majority of the land 
area indicates a significant decrease in the frequency of drought months when compared to 
non-LN years. During EN years, both models indicate that whilst in the central part of the 
country drought frequency experiences a significant decrease compared to non-EN years, 
drought frequency is significantly elevated compared to non-EN years in the areas 
surrounding the central parts. 
 

 
Figure 4.10 Spatial distribution of area with a significant increase, decrease or no change in frequency of 
drought months when comparing the El Nino years with the non El Niño years and the La Niña years with the 
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non La Niña years. Left sub-plots show the results for PCR-GLOBWB, right sub-plots show the results for 
WaterGAP. 
 
Relatively high correlation coefficient values were found for Colombia (see Figure 4.11), 
especially in the north-western parts of the country, with values ranging up to ~0.8. Both 
PCR-GLOBWB and WaterGAP show the same spatial distribution in correlation coefficient 
values although the correlation values themselves seem to be relatively higher for PCR-
GLOBWB. The sub-plots visualizing the optimal lag-time indicate that optimal lag-periods for 
both hydrological models are relatively shorter for Colombia compared to Afghanistan, ~0-3 
months for WaterGAP and ~1-4 months for PCR-GLOBWB. Moreover, both models show an 
inland area (east-central) with consistently high optimal lag-periods of 12 months for both 
models. 
 

 

 
Figure 4.11 Spatial distribution of optimal Pearson correlation coefficient between continuous JMA SST 
values indicating ENSO conditions and the SSFI-1 drought indicator. Left sub-plots show the optimal 
correlation coefficient, right sub-plots show the lag-time that corresponds to the best correlation coefficient 
found. Results for both PCR-GLOBWB and WaterGAP are visualized. 
 
Previous research underpins this result by showing that ENSO has a large influence on the 
inter-annual variability and water resources availability in Colombia. A large part of Colombian 
territory, especially towards the Pacific coast and the central region, is sensitive to the effects 
of droughts and flooding during El Niño and La Niña phases, respectively (World Bank, 2012). 
In addition, previous research shows that the Orinoquia and Amazonia regions present less 
severe anomalies, indicating that El Niño has larger impact towards the Pacific Coast. 
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4.3 Assessment of drought impact and risk platforms and datasets 

4.3.1 Maps of overall drought impact and risk 
Country scale maps are presented that are based on the Global map of drought risk from 
JRC (Carrão et a., 2016) (Figure 4.12). Although the presented indices of drought hazard, 
exposure, vulnerability, impact and risk are dimensionless factors based on an aggregation of 
information and data, they provide a good first impression of the drought risk situation in the 
country. For Colombia, drought hazard is relatively low, while exposure and vulnerability are 
at medium to high levels across large parts of the country. This is in line with the registered 
drought events (only one national scale, but multiple at the sub-national level) and the 
descriptive information of the country characteristics. Based on literature, drought hazard and 
risk are probably higher during dry seasons. This aspect of temporal variability is probably not 
taken up in the maps from JRC. The high vulnerability to droughts in the country is probably 
caused by the fact that Colombia has a history of social unrest and a relatively low GDP. The 
combination of relatively low levels of hazard, but medium to high levels of exposure and 
vulnerability in large parts of the country, leads to drought impact and risk maps with high 
spatial variability. The drought risk in Colombia may be higher than shown in the maps during 
the dry seasons. For an assessment of the spatial variability in the maps a detailed study 
including extensive collection of impact data is required. 
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Figure 4.12  Maps from the Global map of drought risk developed by JRC showing the following 
indices: drought hazard (A), exposure (B), vulnerability (C), impact (exposure x vulnerability) (D), and risk 
(hazard x impact (E)). 

4.3.2 Drought impact on population 
The IWMI data portal provides maps with information related to drought impacts on 
population for all countries in the world: per capita mean annual river discharge, agricultural 
water crowding with respect to mean annual precipitation and agricultural water crowding with 
respect to mean annual river discharge (Figure 4.13). For Colombia it shows that the annual 
discharge per person is low in some mountainous areas, while in the downstream areas it is 
medium to low. The amount of people that are dependent on one m3 precipitation and one m3 
discharge water is very diverse across the country, ranging from low to high. The maps show 
some comparability with the drought exposure and impact maps from JRC (Figure 4.12). For 
an assessment of the spatial variability in the maps a detailed study including extensive 
collection of impact data is required. 
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Figure 4.13  Maps providing impact (exposure/vulnerability) on population available from IWMI water 
data portal, from left to right: per capita mean annual river discharge (m3 per person); agricultural water 
crowding with respect to mean annual precipitation (population m3); agricultural water crowding with respect 
to mean annual river discharge (population m3). 

4.3.3 Impact on agriculture 
Maps of historical agricultural drought impacts are provided by the online Aqueduct Water 
Risk Atlas (baseline water stress with respect to agriculture) and by the FAO-platform 
“Agricultural Stress Index and precipitation anomalies” (Figure 4.14). Due to the difference in 
temporal aggregation periods, the maps cannot be directly compared. The spatial patterns of 
baseline agricultural water stress in the Aqueduct map do not show large similarity with the 
impact map from JRC (Figure 4.12). The FAO-platform provides a map with Agricultural 
Stress Index (ASI; % cropland affected by drought) for each year since 1985. Table 4.3 
provides an overview of the years with coverage of approximately 25% the country or more 
with high to very high ASI levels and matching drought years based on registered droughts 
and the global drought hazard models (see section 4.2.1). According to the ASI maps, 8 out 
of 31-year monitoring period show large areas with high levels of agricultural drought stress. 
Only 2 of these 8 years were listed as registered drought years and 1 of the 8 years showed 
as being a significant drought hazard from the global models. For an assessment of the 
spatial variability in the maps, a detailed study including extensive collection of impact data is 
required. Impact data could consist of local data of actual reduction of water availability to 
agriculture during historical drought periods as well as the effects of such levels of water 
stress on economic revenues. 
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Figure 4.14  Maps of historical agricultural drought impacts. Left: map from the Aqueduct Water Risk 
Atlas providing baseline water stress with respect to agriculture; Right: map from the FAO-platform 
“Agricultural Stress Index and precipitation anomalies for a relatively dry year. 
 

 
Table 4.3 Years with high ASI values during first growing season covering 30% or more of the 
country (FAO platform25) compared to registered droughts and drought hazards determined with global 
models (see section 4.2.1). 

4.3.4 Impact to hydropower 
The online Aqueduct Water Risk Atlas provides maps with baseline water stress with respect 
to electric power generation, which is (almost) identical to the map with baseline water stress 
with respect to agriculture. For Colombia, it can be observed that for a large part of the 
country the stress level is relatively high. The spatial patterns in the map are not in line with 
the map of overall drought impact from JRC (Figure 4.12). This may be caused by the 
different origin of the maps as the maps from JRC are directed at the drought hazard while 
the Aqueduct map focusses on water stress. In addition, the JRC maps overall drought 
impacts, while the Aqueduct map has its focus on electrical power. For an assessment of the 
                                                   

25 http://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=COL 

years with 
high ASI (S1)

Registered 
droughts

Hazard in 
global models

1985 x
1989
1991 x
1992 x
2001
2003
2014 N/A N/A
2015 N/A N/A



 

 

 
11200758-002-ZWS-0003, Version 0.2, November 12, 2018, final 
 

 
Comparative Assessment of Drought Hazard and Risk Modeling Tools 
 

57 of 1621 

 

spatial variability in the maps a detailed study including extensive collection of impact data is 
required. Impact data could consist of the location of hydropower plants and the actual 
reduction of water availability (e.g. lowered reservoirs levels, reduced river discharge) to 
these plants during historical drought periods as well as the effects of such levels of water 
shortage on produced electricity and economic revenues. 
 

 
Figure 4.15   Map from the Aqueduct Water Risk Atlas providing baseline water stress with respect to 
electric power. 

4.3.5 Impact on the overall economy 
A map presenting a socio-economic drought vulnerability index is available from the IWMI-
portal and a default baseline water stress map is available from the Aqueduct Water Risk 
Atlas (both maps in Figure 4.16). The IWMI map shows a low level of socio-economic 
vulnerability but does not provide any spatial differentiation at the sub-national level. The low 
level of socio-economic vulnerability is completely different than the high level of vulnerability 
shown by the JRC map (Figure 4.12). It can be observed that for the largest part of the 
country the default water stress level is low, which is very similar to the Aqueduct maps 
presenting baseline stress with respect to agriculture and electric power. The spatial patterns 
in the map are not in line with the map of overall drought impact from JRC (Figure 3.14). For 
an assessment of the spatial variability in the maps a detailed study including extensive 
collection of impact data is required. 
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Figure 4.16 Maps with drought impact to the overall economy from different online platforms: Socio-
economic drought vulnerability index from IWMI-portal (left); Baseline Water stress – Default form Aqueduct 
Water Risk Atlas (right). 

4.3.6 Impact to municipal and industrial water needs 
Various maps are available at the Aqueduct Water Risk Atlas that relate baseline water stress 
to industrial sectors (mining, food & beverage, chemicals, semi-conductor, oil and gas, 
mining, construction materials, textiles). However, there does not seem to be any variation in 
base line water stress for the different sectors. It is unclear if any spatial information of the 
impact sectors was available for Colombia at the sub-national scale. Also, no independent 
drought impact information for these industrial sectors was available for the case study 
countries during our research. Hence, no further assessment of these impact maps was 
performed. 

4.4 Evaluation of forecasting and monitoring systems 
Colombia has a tropical climate, which in most of the country has a bimodal regime with two 
wet seasons (April-May and October-November), interspersed by two dry periods (January-
February and June-August). The remaining months are considered transition periods. It is 
considered as one of countries in the world having the most ample water resources, but due 
to the complex topography of the Andes, as well as the geographic location between the 
Pacific and Atlantic Oceans, and the Amazonian basin, the distribution of these resources in 
time and space is very heterogonous. In the Northwest of the country in the region of Choco, 
one of the wettest places on Earth can be found with rainfall totals of up to 12 metres annually 
having being observed. The La Guajira department, some 1000 km away is a hyper arid 
zone, with up to 200-300 mm of rainfall per annum being observed on average. Additionally, 
the climate is strongly influenced by the ENSO phenomenon, with El-Niño events typically 
resulting in drought conditions, while La Niña events may lead to anomalous wet conditions. 
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This teleconnection is most apparent in the Caribbean and Andean regions of the country, 
while the signal in the Amazon and Orinoco regions is less clear. Though droughts do occur 
during El Niño events, there are several other climate signals such as the Madden-Julien 
oscillation and the Pacific Decadal Oscillation that have influenced the occurrence and spatial 
distribution of drought. A more complete description can be found in Poveda et al., 2011. 
Recent droughts that have led to extensive impacts include the 1991/1992, 1994/1995, 
1997/1998, 2009/2010 events, and the recent 2015/2016 drought. This most recent event 
caused extensive impacts to agriculture, livestock (particularly in the Orinoco basin), as well 
as major issues with failing drinking water supply to urban areas. 

4.4.1 Current drought monitoring and forecasting 
At the national scale, the monitoring of the climatic and hydrological conditions is the mandate 
of IDEAM (Instituto de Estudios Ambientales y Meteorlogía), with its main office located in 
Bogotá, the capital. IDEAM is an agency that falls under the Ministry of Environment and 
Sustainable Development. The institute operates a nationwide network of meteorological and 
hydrological stations, including conventional stations that report on a daily basis, as well as 
telemetered stations. Though the country is reasonably well covered, the density of stations 
may vary significantly. Data from these stations, complemented by additional information from 
global resources (for example satellite data such as from GOES) are used to develop a 
monthly state of the climate bulletin, which reports on a range of meteorological variables 
such as precipitation and temperature (extremes and anomalies) and drought indicators such 
as percentage normal precipitation, and the SPI for monthly accumulations ranging from SPI1 
to SPI48 months. A climate outlook is also included in the bulletin, primarily based on the six 
monthly ENSO outlook published by the IRI institute at the University of Columbia in New 
York. Additionally, consensus seasonal forecasts are made and included in the bulletins 
available on the IDEAM website. These consensus forecasts are made on a monthly basis, 
with experts from across IDEAM contributing. Though no other formal seasonal forecasts are 
included, IDEAM may also issue possible scenarios of precipitation anomalies based on 
analyses of previous El-Niño events. The declaration of a drought event appears to be done 
primarily by IDEAM based on El Niño conditions prevailing, although it is not fully clear if a 
specific threshold is used or if the declaration is based on consensus. 
 
While IDEAM has the mandate to issue bulletins of the climatic situation as well as outlooks, 
the organisation and coordination of the response at the national level is the mandate of the 
Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD, National Unit for 
Managing Disaster Risk). In the case of drought, this unit may issue a contingency plan to 
mitigate drought impacts. These contingency plans are developed on a per-event basis. 
UNGRD will also use assessments of drought vulnerability across the country, such as 
possible failure of water supply for domestic and agricultural use. Such analyses are based 
on indicators contained in the National Water Study (Estudio Nacional de Agua, ENA) and the 
regional water resources evaluation plan (Evaluación Regional de Agua, ERA), which are (or 
should be) developed for each identified river basin. UNGRD is also currently considering the 
development of a drought monitoring system at the national level to support their activities. 
 
In addition to the national level agencies, there are 23 regional water management agencies 
(where regional is synonymous to the departmental level). While most of these agencies 
depend primarily on the information made available from IDEAM, a selected few also operate 
their own data networks and forecasting systems. One example is the Corporación Autonoma 
del Valle de Cauca (CVC), in the Valle del Cauca department. Although they depend on the 
declaration of drought by IDEAM to enact a local drought contingency plan, they also use a 
seasonal forecasting system, primarily for the prediction of seasonal inflows to a reservoir in 
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their area of jurisdiction. This uses an Ensemble Streamflow Prediction (ESP) type approach, 
as well as statistical forecast models based on selected ENSO indices. These forecasts are 
run operationally on the national hydrological forecasting system (FEWS Colombia) that is 
hosted by IDEAM. Its main use is short- to medium-range hydrological forecasting. 

4.4.2 Available operational systems 
 
Monthly Climate Bulletin 
The Monthly Bulletin is developed by the IDEAM, along with its state of the climate, through 
selected indices including precipitation and temperature (extremes and anomalies) as well as 
drought indicators such as percentage-of normal-precipitation and SPI for monthly 
accumulations ranging from SPI1 to SPI48 months. 
 
FEWS Colombia 
The Operational Hydrological Forecasting System is primarily used for issuing short- to 
medium-range (flood) forecasts, but also includes an Ensemble Streamflow Prediction 
seasonal forecast for reservoir inflows and statistical forecast models based on ENSO 
indices. 
 
Table 4.4 provides an overview of the main characteristics of the monitoring and forecasting 
products available in Colombia. 
 
Table 4.4 Overview of characteristics and performance of drought monitoring and forecasting Models 
available in Colombia. 

 IDEAM Bulletins FEWS Colombia 
Monitoring Yes Yes 
Forecasting Yes Yes 
Region/countries/areas Colombia Colombia 
Spatial resolution N/A Point 
Datasets used Station data Station Data 
Tools used - Delft FEWS 
Indices presented PPA, SPI1-SPI24 Inflow Volume 
Reflective of impacts Limited No 
Forecast horizon N/A N/A 
Update frequency Monthly Monthly 
Accessibility of forecast Good N/A 
Method of access PDF download Client system 
Procedure / steps N/A N/A 
Resources required N/A N/A 
Post-processing N/A N/A 
Hit-rate (estimation) N/A N/A 

 

4.4.3 Predictability of droughts and potential for improvement 
The correlations between the ENSO phenomenon and the anonymous meteorological and 
hydrological conditions, which are stronger for the December-February season and weaker 
during March-May (Poveda et al., 2001; Poveda et al., 2011), would suggest a reasonable 
predictability of the onset of drought conditions over Colombia. Dutra et al. (2014) show for 
the Northern part of South America the improved skill for predicting the onset of drought 
conditions using ECMWF’s System 4 global seasonal forecasting system. Despite this 
apparent predictability, little effort has been dedicated to date in moving beyond the six 
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monthly outlooks of El Niño conditions provided by the IRI Institute in New York along with the 
consensus forecasts from the regional climate outlook forum. 
 
More comprehensive seasonal forecasts could provide significantly more detail on the onset 
and severity of drought conditions across the country. Such forecasts use either statistical 
forecasts that have been shown to provide skill in other areas of the world with strong 
teleconnections such as the Greater Horn of Africa (Funk et al., 2014), using dynamical 
seasonal prediction models, or mixed approaches (Trambauer et al., 2015; Schepen et al., 
2012). The same holds for improved monitoring, where merged station/satellite precipitation 
products such as CHIRPS could complement station-only based assessments of drought 
conditions in the area of the country where the monitoring network of IDEAM has low station 
density. There are some initiatives underway to improve drought monitoring and forecasting 
through introduction of systems such as GeoCLIM which has been piloted both at IDEAM and 
at CVC, as well as extending the FEWS Colombia system to provide additional seasonal 
forecasting functionality. 
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5 Results - Ethiopia 

5.1 Drought risk related country characteristics 

5.1.1 Introduction to the country 
Ethiopia is a land locked country located in the horn of Africa. The country shares its borders 
with Sudan in the north and west; Kenya in the south; Somalia and Djibouti in the east. 
Ethiopia is an ancient country with a unique culture and diversity of people. Since the 
establishment of the federal administrative structure, there are nine regional governments and 
two federal city states including the capital city, Addis Ababa. As of August 8, 2017, the 
population in Ethiopia was 104,571,284, of which 79.3 % of the population lives in rural 
area26. 
Ethiopia is one of the places that have an extremely varied topography with a complex 
geological history that began millions of years ago and continues. The country has about 50% 
percent of the African Mountains, which covers about 371,432 km2 above 2,000 meters (FAO 
1984). The range in altitude varies from 126 meters below sea level (m.s.l.) in the Dalol 
Depression rising to the highest mountain Ras Dashen in Semien Mountains at about 4,620 
m.s.l. The northern half of the country is dissected by the Ethiopian Rift Valley. This valley 
runs about 600km along the north–northeast Kenyan Border (Awulachew and Yilma, 2007). 
The country is highly dependent on agriculture, which has suffered from extreme recurring 
droughts resulting in poor agricultural output. The main characteristics of Ethiopia are listed in 
Table 5.1. 
 
Table 5.1 The main characteristics of Ethiopia, Sources: UN-Water (2004) and Viste et al., 2013.. 

Geography 
 Total Area 1.13 Million km2 

Land 99.3% (1.122 Million km2) 

Water 0.7% (0,0791 km2) 

Highest Elevation 4000 m 

Land Use 
 Arable 10.01% 

Perm. Crop 0.65% 

Other 84.4% (2013) 

People 
 Population 71.1 Million (2004.) 

Population Growth Rate 2.9 % (2004) 

Economy 
 GDP growth rate 

GDP per capita 
6% (2004 est.) 
72.37 USD Billion in 201627 

Water Statistics* 
 Lowlands Rainfall 

Highlands  Rainfall 
91 - 600 mm per annum 
1,600–2,122 mm per annum 

*) Calculated by Awulachew and Yilma (2007) from Global Precipitation Climatology Centre data. 

                                                   
26 Ethiopia Population (LIVE) retrieving data: http://www.worldometers.info/world-population/ethiopia-population/; 

accessed date 09-08-17 
27 Trading economics: https://tradingeconomics.com/ethiopia/gdp ; accessed date 09-08-17 

https://tradingeconomics.com/ethiopia/gdp
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5.1.2 Hydrology and water resources 
Ethiopia has 12 major river basins resulting in a total mean annual flow from all rivers of 122 
Billion cubic meters (BCM). There are 11 large fresh water lakes, 9 saline lakes, 4 crater 
lakes and 12 major wetlands and major swamps covering about 7,500km. The majority of the 
lakes (except for Tana, Ziway, Langano and Chamo) have no surface water outlets and most 
of these lakes are rich in fish. Shala and Abiyata Lakes located in the southern Ethiopia have 
high concentrations of chemicals and recently Lake Abiyata is being used for production of 
soda ash. 
 
Although Ethiopia has relatively low groundwater potential compared to the surface water 
potential, the total exploitable groundwater potential is still high. It is estimated to be 2.6 BCM 
(Awulachew and Yilma, 2007). 
 
Figure 5.1 shows that the baseline water stress in Ethiopia is low to medium. Baseline water 
stress is defined by WRI as the ratio of total annual water withdrawals to total available 
annual renewable supply, accounting for upstream consumptive use. Higher values indicate 
more competition among users. If the baseline water stress is low, meteorological and 
hydrological drought is not likely to translate into water shortage. 
 

 
Figure 5.1 Low to medium baseline water stress (= withdrawals divided by renewable supply) in 
Ethiopia, according to Aqueduct Water Risk Atlas from WRI. 

5.1.3 Climate 
Most of Ethiopia experiences one main wet season - ‘Kiremt’ - from mid-June to mid-
September (up to 350mm per month in the wettest regions). Parts of northern and central 
Ethiopia also have a secondary wet season with sporadic and less rainfall from February to 
May - ‘Belg’. The  southern regions of Ethiopia experience two distinct wet seasons, here the 
March to May ‘Belg’ season is the main rainfall season yielding 100‐200 mm per month, 
followed by a lesser rainfall season in October to December called ‘Bega’ with around 100mm 
per month.  The eastern most corner of Ethiopia receives very little rainfall at any time of year 
and can be considered dry throughout the entire year. The climate is highly influenced by the 
Inter-Tropical Convergence Zone (ITCZ). 

5.1.4 Drought history 
It has been claimed that June 2011 was the driest month over the past 60 years and it was 
very extreme in some regions of Somalia, northern Kenya and southern Ethiopia. The year 
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leading up to 2011 was already the driest season in over 60 years and it was very extreme in 
some regions of Somalia, northern Kenya and southern Ethiopia. The year 2009 was very dry 
nationally, making it a catastrophic drought next to the 1984 drought (Viste et al., 2013). Yet, 
the droughts in the years 2015 and 2016 were even more severe. They resulted from very dry 
rainy seasons and both national and international emergency feeding programs were active 
to reduce the impacts of the drought28. Over the long term, the 1980s have been relatively dry 
compared to 1990s and 2000s. 
 
In EM-DAT, various drought events have been recorded, including the number of affected 
people (Figure 5.2). There is little agreement between these figures and the droughts 
mentioned above except that the period 1990 – 2000 shows relatively small number of 
droughts. 
 

 
Figure 5.2 Drought events in Ethiopia recorded by EM-DAT 

5.1.5 Recent drought study 
For Ethiopia, an assessment of spatially varying drought indices has been conducted 
(Wondie and Terefe, 2016) in which the Palmer Drought Severity Index for the period 1941 to 
2010 was calculated using the CRU dataset (Harris et al., 2016). The Palmer Drought 
Severity Index PDSI (Palmer, 1965) takes into account moisture received (precipitation) as 
well as moisture stored in the soil, accounting for the potential loss of moisture due to 
temperature influences. In the assessment, a self-calibrated PDSI was also utilized (ScPDSI, 
Wells at al. 2004). This overcomes one limitation of the PDSI, which is the use of duration 
factors that are based on the same precipitation thresholds for different locations. By defining 
location specific thresholds for the calculation of durations this problem is solved. During the 
period covered by both sources (1980 – 2010), a limited number of severe drought events 
occurred (scPDSI < 2) between 1991 and 2000 (Figure 5.3). For this period, EM-DAT shows 
a relatively small number of drought events in this period. In terms of trends it was found that, 
for very dry spells with ScPDSI values of -2 to -2.99, no clear trend could be derived at the 
country scale, but on the regional scale the trend in calculated PDSI values shows that in the 
western and northern part of Ethiopia extended areas experiencing drought increases with 
time (Figure 5.4). 

                                                   
28 World Food Programme, www.wfp.org, accessed December 2017 
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Figure 5.3 PDSI values derived from time-series for the period 1901-2014. 
 

 
Figure 5.4 Number of months with dry events (PDSI < -2) during the periods as mentioned on top of the 
graphs, visualising the positive drought trend in the western and northern parts of Ethiopia 

5.2 Assessment of available drought hazard models 

5.2.1 Comparison and validation at the country scale 
For the relevant drought hazard indices available from the global datasets (section 2.2.1), 
graphs were produced for the percentage-area of the country experiencing drought conditions 
at three drought levels:  moderately dry (index value below -1), severely dry (index value 
below -1.5) and extremely dry (index value below -2). All graphs are shown in Appendix A3. 
In these graphs, the registered droughts from EM-DAT are plotted as well. Based on the 
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graphs, the overlap of global drought hazard with reported droughts was assessed as well as 
the comparability of datasets and indices. SPI1 was left out of the comparison because the 
results are relatively spikey and could not be compared to drought events at a yearly time 
scale. 
 
Table 5.2 gives an overview of the results for Ethiopia, showing that the reported droughts are 
not always well predicted by the drought hazard indices from the global datasets. For more 
than 60% of the calculated dataset-index combinations, the calculated drought hazard is not 
very pronounced, or barely visible if at all. The SPEI3 index based on the WaterGAP 
database shows a relatively good overlap with registered drought events. 
 
The comparability of the dataset-index combinations is limited. In the 30 year period that was 
assessed, the global models indicated eight other drought years which were not registered as 
drought events by EM-DAT. False alarm rates of individual dataset-index combinations range 
between 36% (WaterGAP-SPEI3) to 63% (GLS-SPI12). For the years without registered 
drought events, the comparability of the droughts shown by the different dataset-index 
combinations was relatively high compared to the years with registered drought events. 
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Table 5.2 Results of the country-scale assessment of globally available drought hazard dataset-index 
combinations. In the table, years with registered drought events are shown in black and years without 
registered drought events, but drought hazards shown by the dataset-index combinations, are shown in red. 
Corresponding graphs can be found in Appendix A3. 
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5.2.2 Validation with local data 
For Ethiopia, 38 streamflow measurement stations were available for use with 84.7 months 
being the average length of the time-series. As shown in Figure 5.5Figure 5.5, most 
observation stations available for use are located in the central part of the country with little to 
no stations being located in the border areas. 
 

 
Figure 5.5 Spatial distribution of GRDC measurement stations available for use in Ethiopia and their 
performance values for the percent bias, and the Pearson correlation coefficient. 
 
Figure 5.6Figure 5.6 shows (for both GHMs) the results for the two performance metrics 
taking into account all available stations. For Ethiopia, WaterGAP shows a significantly higher 
median correlation coefficient of 0.66 (ranging between 0.06 – 0.94) compared to a median 
correlation coefficient of 0.36 for PCR-GLOBWB (ranging between 0.01 – 0.90). When 
looking at the distribution in correlation coefficient values we find structural differences 
between the two models (Figure 5.6). Whereas for the percent bias in long-term mean 
discharges approximately halve of the stations show similar values among the two models, 
significant differences are found in the correlation coefficient for a majority of the 38 stations 
evaluated. Regarding the median percent bias, WaterGAP shows on average a better 
performance with a median percent bias of 73.4% compared to 146.3% for PCR-GLOBWB. 
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Figure 5.6 Distribution of the correlation coefficient (left) and percent bias (right) values for both PCR-
GLOBWB and WaterGAP. X-axis represents all stations available for analysis in Ethiopia. Y-axis represents 
the correlation coefficient values or the percent bias values. 
 
Figure 5.7Figure 5.7 shows two hydrographs for selected discharge observation stations in 
Ethiopia with 24 and 108 months of data available. For the first station (visualized on the left) 
we see that WaterGAP is well able to characteize the hydrological seasonal pattern whereas 
PCR-GLOBWB has difficulties tin expressing peak- and low-flow discharges. This is relfected 
in the performance values found for both models. WaterGAP returns a considerably high 
correlation coefficient value (0.93) and a relatively low percent bias (31.6%). PCR-GLOBWB, 
on the other hand, returns a correlation coefficient value of 0.56 and a percent bias of 
100.8%. For the second station, we see that both models are reasonably able to reflect the 
seasonal and inter-annual variation in discharges, which is translated into correlation values 
of 0.189 (PCR-GLOBWB) and 0.56 (WaterGAP) with percent-bias values of 58.15% (PCR-
GLOBWB) and 54.9% (WaterGAP), respectively. Although a visual inspection PCR-
GLOBWB’s ability to reflect the hydrological variation seems to be better in the right sub-plot 
compared to the left one, correlation coefficient values indicate otherwise. One should take 
into account here, however, that the left sub-plot uses only two years of data and that a small, 
but well-timed peak as is shown in August and a correctly timed falling limb might already 
provide basis for relative high performance values here. This indicates that it is important to 
not only evaluate the performance values themselves, but to combine this with a visual 
inspection of the hydrographs. Hydrographs for all other stations in Ethiopia are available as a 
supplement to this document. 
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Figure 5.7 Hydrographs visualizing the performance of PCR-GLOBWB and WaterGAP relative to the 
historical observations. 
 
 

5.2.3 ENSO analysis 
The median share of total land area exposed to drought shows to be significantly lower during 
La Niña (LN) years, compared to Neutral (N) and El Niño (EN) years for both SPI and SSFI, 
irrespectively of the accumulation period and the hydrological model used (see Figure 
5.8Figure 5.8). At the same time, for these indicators, the share of land area exposed to 
drought seems to be significantly elevated when selecting only the EN years. For the SPEI 
indicator, the figure is more dispersed, with results varying between the accumulation periods. 
 
For PCR-GLOBWB we find for the shorter accumulation (1-, 3 months) periods that the share 
of land area exposed to drought is significantly elevated under EN years and significantly 
lower under LN years.  At longer accumulation times (e.g. 12 months) both EN and LN years 
show significantly elevated exposure compared to the N years. For WaterGAP we did not find 
a consistent pattern across the different accumulation periods. Whilst for the 1-month 
accumulation period median drought exposure is shown to be highest under LN years, no 
substantial differences were found at the 3-month accumulation period, and even an opposite 
signal was shown when looking at the 12-month accumulation period. 
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Figure 5.8 Area in drought in Ethiopia during El Niño (EN), La Niña (LN), or neutral years using the SPI, SPEI 
and SSFI drought indicator. The open symbols show the results for WaterGAP while the filled symbols show 
the results for PCR-GLOBWB. Different colors indicate the different accumulation periods used: 1 month 
(black), 3 months (blue) and 12 months (red). 
 
Similar to the spatially explicit results found for Afghanistan and Colombia, we also found in 
Ethiopia that both models showed (for a vast majority of the land area) that the frequency of 
drought months significantly decreases during LN years when compared to non-LN years 
(see Figure 5.9Figure 5.9). Only in the south-eastern parts of the country did we find isolated 
areas having significant increases in drought frequency during LN years. For EN years the 
opposite signal is shown. Most of the land area shows a significant increase in drought 
frequency, while a few spots indicate areas with a significant decrease. However, as shown 
by Figure 5.9Figure 5.9, this is not a 100% opposite signal. For example, in the northern part 
of Ethiopia we find places that experience a significant decrease in drought frequency both 
during EN and LN years. 

 
Figure 5.9 Spatial distribution of area with a significant increase, decrease or no change in frequency of 
drought months when comparing the El Niño years with the non El Niño years and the La Niña years with the 
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non La Niña years. Left: Sub-plots show the results for PCR-GLOBWB. Right: Sub-plots show the results for 
WaterGAP. 
 
Pearson correlation coefficient values between the continuous JMA SST and the SSFI-1 are 
shown to be relatively low for Ethiopia (see Figure 5.10). Moreover, no significant spatial 
variation in the height of the correlation coefficient value was identified. Both the PCR-
GLOBWB and WaterGAP values fluctuate around ~0.1-0.2. A significant spatial variation 
does exist when evaluating the optimal time-lag to be used to establish the correlations 
between JMA SST and SSFI-1. Both models show relatively long optimal time-lags for the 
central and south-eastern part of the country, whilst optimal lags are relatively shorter in the 
Northwest. Deviations exist between both models when looking at the far south-eastern 
region of Ethiopia. Here, WaterGAP indicates relatively long optimal time-lags for the 
correlation between the JMA-SST and the SSFI-1 whilst PCR-GLOBWB identifies 
significantly shorter optimal time-lags. 

 

 
Figure 5.10 Spatial distribution of optimal Pearson correlation coefficient between continuous JMA SST 
values indicating ENSO conditions and the SSFI-1 drought indicator. Left: Sub-plots show the optimal 
correlation coefficient. Right: Sub-plots show the lag-time that corresponds to the best correlation coefficient 
found. Results for both the PCR-GLOBWB and WaterGAP are visualized. 

5.3 Assessment of drought impact and risk platforms and datasets 

5.3.1 Maps of overall drought impact and risk 
Country scale maps are presented that are based on the Global map of drought risk from 
JRC (Carrão et al, 2016) (Figure 5.11). Although the presented indices of drought hazard, 
exposure, vulnerability, impact and risk are dimensionless factors based on an aggregation of 
information and data, they provide a good first impression of the drought risk situation in the 
country. For Ethiopia, drought hazard is relatively low in the central and western parts of the 
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country, while in the north, south and east some zones with medium to high drought hazards 
are shown. This does not fully match with the assessments of drought hazards that showed a 
higher number of drought hazard events at the country level (section 5.2.1). Exposure ranges 
from low to high and vulnerability is high across the entire country, which matches with the 
descriptive information of the country characteristics. The combination of varying levels of 
drought hazard and exposure, combined with high vulnerability, leads to impact and risk 
levels that range from low to high. Based on the number of registered drought events, this 
appears to be an underestimation of the actual drought impact and risk situation in Ethiopia. 
For an assessment of the spatial variability in the maps a detailed study including extensive 
collection of impact data is required. 
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Figure 5.11 Maps from the Global map of drought risk developed by JRC showing the following indices: 
drought hazard (A), exposure (B), vulnerability (C), impact (exposure x vulnerability) (D), and risk (hazard x 
impact) (E). 
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5.3.2 Drought impact on population 
The IWMI data portal provides maps with information related to drought impacts on 
population for all countries in the world: per capita mean annual river discharge, agricultural 
water crowding with respect to mean annual precipitation, and agricultural water crowding 
with respect to mean annual river discharge (Figure 3.15). For Ethiopia it shows that the 
annual discharge per person is diverse varying from medium-high in the areas bordering 
rivers to very low in the eastern part of the country. The amount of people that are dependent 
on one m3 precipitation and one m3 discharge water also varies widely from low to high. For 
the eastern part of the country this information is not available. The maps show some 
comparability with the drought impact and risk map from JRC (Figure 5.11). For an 
assessment of the spatial variability in the maps a detailed study including extensive 
collection of impact data is required. Impact data could consist of local data of actual 
reduction of water availability to the population and agriculture during historical drought 
periods as well as the effects of such levels of water shortage on economic revenues. 
 

 
Figure 5.12 Maps providing impact (exposure/vulnerability) to population available from IWMI water 
data portal, from A to C: per capita mean annual river discharge (m3 per person); agricultural water crowding 
with respect to mean annual precipitation (population m3); agricultural water crowding with respect to mean 
annual river discharge (population m3). 

5.3.3 Impact on agriculture 
Maps on historical agricultural drought impacts are provided by the online Aqueduct Water 
Risk Atlas (baseline water stress with respect to agriculture) and by the FAO-platform 
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“Agricultural Stress Index and precipitation anomalies” (Figure 5.13). Due to the difference in 
temporal aggregation periods, the maps cannot be compared. The spatial patterns of 
baseline agricultural water stress in the Aqueduct map shows little similarity with the impact 
map from JRC (Figure 5.11). The FAO-platform provides a map for the Agricultural Stress 
Index (ASI; % cropland affected by drought) for each year since 1985. For an assessment of 
the spatial variability in the maps a detailed study, including extensive collection of impact 
data, is required. Table 5.3 provides an overview of the years with coverage of approximately 
25% the country or more with high to very high ASI levels and matching drought years based 
on registered droughts and the global drought hazard models (see section 5.2.1). According 
to the ASI maps, 9 out of 31-year monitoring periods show large areas with high levels of 
agricultural drought stress. Only 5 of these 9 years were listed as registered drought years 
and 4 of the 9 years were shown to be significant drought hazards by the global models. 
 

 
Figure 5.13 Maps on historical agricultural drought impacts. Left: Map from Aqueduct Water Risk Atlas 
providing baseline water stress with respect to agriculture; Right: Map from FAO-platform “Agricultural Stress 
Index and precipitation anomalies for a relatively dry year. 
 

 
Table 5.3 Years with high ASI values during first growing season covering 30% or more of the country (FAO 
platform29) compared to registered droughts and drought hazards determined with the global models (see 
section 5.2.1). 

                                                   
29 http://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=ETH 

years with high 
ASI (S1)

Registered 
droughts

Hazard in global 
models

1984 x
1987 x
1991 x
2002
2008 x (x)
2009 x (x)
2011 x
2012 x
2015 N/A N/A
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5.3.4 Impact on hydropower 
The online Aqueduct Water Risk Atlas provides maps with baseline water stress with respect 
to electric power, which is (almost) identical to the map with baseline stress with respect to 
agriculture. For Ethiopia it can be observed that for a large part of the country the stress level 
is relatively low. The spatial patterns in the map are not in line with the map of overall drought 
impact from JRC (Figure 5.11). For an assessment of the spatial variability in the maps a 
detailed study including extensive collection of impact data is required. Impact data could 
consist of the location of hydropower plants and the actual reduction of water availability (eg. 
lowered reservoirs levels, reduced river discharge) to these plants during historical drought 
periods as well as the effects of such levels of water shortage on produced electricity and 
economic revenues. 
 

 
Figure 5.14  Map from the Aqueduct Water Risk Atlas providing baseline water stress with respect to 
electric power. 

5.3.5 Impact to overall economy 
A map presenting a socio-economic drought vulnerability index is available from the IWMI-
portal, a default baseline water stress map is available from the Aqueduct Water Risk Atlas 
and a map showing a drought vulnerability index at the sub-basin level from the African 
Drought Observatory (all maps in Figure 5.15). The IWMI map shows a high level of socio-
economic vulnerability but does not provide any spatial differentiation at the sub-national 
level. This is more or less similar to the vulnerability map from JRC (Figure 5.11). It can be 
observed that for a large part of the country the default water stress level on the Aqueduct 
map is relatively low, which is (almost) identical to the maps presenting baseline stress with 
respect to agriculture and electric power. The spatial patterns in the map are not in line with 
the map of overall drought impact from JRC (Figure 5.11). The map with the vulnerability 
index from the African Drought Observatory provides relatively detailed information, showing 
high vulnerability in the centre of the country, and low to medium high vulnerability in the 
surrounding areas. For an assessment of the spatial variability in the maps a detailed study 
including extensive collection of impact data is required. 
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Figure 5.15 Maps with drought impacts on the overall economy from different online platforms. Top: 
Socio-economic drought vulnerability index from IWMI-portal; Middle: Baseline Water stress – Default form 
Aqueduct Water Risk Atlas (right); Bottom: Drought Vulnerability Index (sub-basin level) from African Drought 
Observatory. 
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5.3.6 Impact on municipal and industrial water needs 
Various maps are available from the Aqueduct Water Risk Atlas that relates baseline water 
stress to industrial sectors (mining, food & beverage, chemicals, semi-conductor, oil and gas, 
mining, construction materials, textiles). However, there does not seem to be any variation in 
base line water stress for the different sectors. Also, no independent drought impact 
information for these industrial sectors was available for the case study countries. Hence, no 
further assessment of these impact maps was performed. 

5.4 Evaluation of forecasting and monitoring systems 
 

5.4.1 Current drought monitoring and forecasting 
In Ethiopia, the National Meteorology Agency (NMA) provides weather forecast and early 
warnings on the adverse impacts of weather and climate (e.g., droughts and floods) by 
collecting, analysing, and studying atmospheric and earth observation data in Ethiopia. This 
climate information includes: daily weather report and forecast, 3-day weather assessment 
and forecast, ten-day forecast, monthly forecast, and seasonal forecast. The seasonal 
forecasts are provided for two rainy and one dry seasons. For the rainy seasons, a monthly 
update with the season’s assessment (in-season progress report) is provided. The NMA 
mainly uses statistical forecasting methods that are based on empirical relationships between 
rainfall over specific parts of the country, which is coupled with several global (e.g., ECMWF, 
NOAA CPC, and IRI), regional (e.g. ICPAC) and local climate-based indices (e.g. 
Standardized Precipitation Index). The major planetary and synoptic systems climate systems 
that are operationally considered for monitoring and forecasting at NMA include:  
• Evolution of monsoons;  
• Vertical profiles of winds (both speed/magnitude and direction) at the earth’s surface, at 

medium height from the earth surface (e.g. 500-hPa geo-potential height) and at upper 
air (e.g., 200-hPa geo-potential height);  

• Madden-Julian Oscillation (MJO); (iv) Quasi Biennial Oscillation (QBO); (v)El Niño and 
Southern Oscillation (ENSO), (vi) Indian Ocean dipole (IOD), (vii) tropical 
storms/cyclones; 

• Sea surface temperature (SST) gradients that have been derived from general 
circulation models using national, regional, and global products.  

The climate forecasts information are produced by the NMA are provided through national 
radio, television and periodic national bulletins30.  In addition, the NMA, as part of the regional 
IGAD (Inter-Governmental Authority on Development) Climate Prediction and Applications 
Centre (ICPAC), participates and produces seasonal climate prediction and early warning 
information using both statistical and dynamic climate forecasting methods31. This includes 
the Greater Horn of Africa Climate Outlook Forum (GHACOF). GHACOF that covers the 
countries in the region (i.e., Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Sudan, 
Somalia, Tanzania and Uganda) is coordinated by the ICPAC in Nairobi, Kenya.  Leveraging 
the GHACOF forum, ICPAC provides periodic/regular seasonal climate information for the 
region. The GHACOF statements are available at the ICPAC website32 in a bulletin format 
reviewing the existing climate conditions over the GHA region and seasonal outlooks for the 
region’s rainy seasons (e.g., the March to May, June to September, and October to 
December season). Highlights on the socio-economic climate impacts (e.g., impact on 
agriculture and vegetation condition) associated with the observed climate and seasonal 
outlooks are also provided in the bulletin. 

                                                   
30 http://www.ethiomet.gov.et/) 
31 http://www.icpac.net/index.php/climate-monitoring.html 
32 http://www.icpac.net/index.php/climate-monitoring/seasonal-forecasts.html 

http://www.icpac.net/index.php/climate-monitoring/seasonal-forecasts.html
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5.4.2. Available operational systems 
The global climate information products that are considered by the NMA and ICPAC include: 
• ECMWF climate forecasts/products 

https://www.ecmwf.int/en/about/what-we-do/global-forecasts 

• FEWS products for Africa and regions (e.g., East Africa) 
https://earlywarning.usgs.gov/fews/search/Africa 

• The IRI probabilistic seasonal climate forecast 
http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/ 

• NOAA CPC: East Africa weather and climate (CFSV2 and NMME) 
http://www.cpc.ncep.noaa.gov/products/international/eafrica/eafrica.shtml 
http://www.cpc.ncep.noaa.gov/products/NMME/seasanom.shtml 

 
A summary of the main characteristic of the available monitoring and forecasting systems is 
given in Table 5.4. 
 
Table 5.4 Characteristics of seasonal drought monitoring and forecasting systems available in Ethiopia. 
Characteristics NMA monitoring- and forecasting system 
Monitoring Yes 
Forecasting Yes 
Region/countries/areas Ethiopia, Greater Horn of Africa region 
Spatial resolution Various including national and regional scale 
Datasets used Climate and satellite derived climate data (e.g., precipitation 

estimate) and regional and global climate products including 
stations (ground) observations, ECMWF products, NOAA GFS, 
and USGS/FEWS MODIS. 

Software and tools used N/A 
Indices presented Climate and satellite-derived indices such as SPI and NDVI 
Reflective of impacts Yes 
Forecast horizon Seasonal 
Update frequency Ten-daily and monthly 
Accessibility of forecast Freely accessible 
Method of access Radio, TV, and forecast bulletins through NMA website 
Procedure / steps Final climate products can be downloaded directly. 
Resources required Internet, TV, and Radio access 
Post-processing Weather assessment information periodically provided 
Hit rate (estimation) N/A 
 
 
5.4.3 Predictability of droughts and potential for improvement 
Studies suggest that the ENSO phenomenon is a main driver of interannual variability of 
seasonal precipitation in Ethiopia (Korecha and Barnston, 2007; Block and Rajagopalan, 
2007; Tadesse, 1994). The predictability of droughts during the long rainy season (June–
September) is governed primarily by ENSO, and secondarily reinforced by more local climate 
indicators near Africa and the Atlantic and Indian Oceans (Korecha and Barnston, 2007). 
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Operational rainfall forecasts using the analog method have been issued in Ethiopia since 
1987. The NMA uses a statistical method based on analogue, multivariate ENSO index years 
for both long (summer) and short (spring) seasons (Diro et al., 2008). The outputs of this 
method are probabilistic categorical forecasts of regional Ethiopian rainfall. Rainfall anomaly 
patterns, including droughts, can be predicted with some skill within a short lead time of June-
September based on emerging ENSO developments (Korecha and Barnston, 2007). 
 
Even though the NMA performs routine evaluation of short- and long-term (seasonal) 
forecasts, there is no published documentation that indicates a comprehensive range of 
verification statistics to evaluate the accuracy of the forecasts in Ethiopia. However, several 
researchers (including the NMA experts) have studied the skill of seasonal forecasts in 
Ethiopia (Gleixner et al., 2017; Jury, 2014; Korecha and Sorteberg, 2013; Diro et al., 2008). 
For example, the evaluation of the performance of the forecast system for February–May and 
June–September rainy seasons over the period 1999–2011 showed that forecasts issued by 
the NMA have a weak positive skill for all eight regions of Ethiopia compared with climatology 
(Korecha and Sorteberg, 2013). This study suggested that the forecasting system has bias 
toward forecasting near-normal conditions and has problems in capturing droughts (below 
average rainfall events). However, the seasonal forecast has some positive skills in ranking 
the wet years of spring (February–May) season over the regions where there is high seasonal 
rainfall variability with significantly positive rank correlations for the above average rainfall 
years (Korecha and Sorteberg, 2013).  Although the analogue method using ENSO years is 
skilful for some regions and seasons, it has little skill for the spring rains in the south of 
Ethiopia because of the fact that the ENSO signal is weaker during the spring (Diro et al., 
2008). This shows that in addition to the existing analog method, the NMA should explore the 
possibility of improving the forecasts by using other dynamical and statistical forecast 
techniques that include the seasonal forecast information from available global modeling 
systems. 
 
According to Jury (2007), early season forecasts from the coupled forecast system (CFS) are 
steadier than the European community medium range forecast (ECMWF) across the 
Ethiopian highlands. For example, in the period 1981–2006, the CFS and ECMWF April 
forecasts of June–August (JJA) rainfall achieved significant fit (𝑟2 = 0.27, 0.25, resp.), but 
ECMWF forecasts tend to have a narrow range with drought being under predicted (Jury, 
2007). In a recent study, Gleixner et al. (2017) analyzed eleven dynamical prediction models 
(coupled general circulation models) and found that the summer rainfall prediction of the most 
skillful model from ECMWF has a correlation of 0.53 with observations. However, the majority 
of the 11 models studied here are not skillful (Gleixner et al., 2017). This also indicates further 
studies on global modeling systems are needed to understand the causes of instability in 
seasonal forecasts and develop bias correction for improved rainfall and temperature 
forecasting skills. 
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6 Results - Fiji 

6.1 Drought risk related country characteristics 

6.1.1 Introduction on the country 
The Republic of Fiji is an island country in Melanesia in the South Pacific Ocean about 1,100 
nautical miles northeast of New Zealand's North Island. Fiji is an archipelago of more than 
330 islands, of which 110 are permanently inhabited, and more than 500 islets. The two major 
islands, Viti Levu and Vanua Levu, support 87% of the population of almost 920,000. The 
capital Suva is located on Viti Levu. About three-quarters of Fijians live on Viti Levu's coasts, 
either in Suva or in smaller urban centers like Nadi or Lautoka. Fiji has one of the most 
developed economies in the Pacific due to an abundance of forest, mineral, and fish 
resources. Today, the main sources of foreign exchange are its tourist industry and sugar 
exports. The main characteristics of Fiji are listed in Table 6.1. 
 
Table 6.1 - Main characteristics of Fiji. (Source: SOPAC, 2007) 

Geography 
 Total Area 18,270 km2 

Land 18,270 km2 

Water 0 km2 

Highest Elevation 1,324 m 

Land Use 
 Arable 10.95% 

Perm. Crop 4.65% 

Other 84.4% (2005) 

People 
 Population 918 675 (July 2007 est.) 

Population Growth Rate 1.394% (2007 est.) 

Economy 
 GDP per capita (PPP) $6,200 (2006 est.) 

Water Statistics 
 Avg Rainfall 2000 - 3000 mm per annum 

 

6.1.2 Hydrology and water resources 
Surface water is used as the main source of supply for all major towns on the larger, high 
islands of Fiji. Some small, low lying islands rely exclusively on groundwater and rainwater. 
Contamination of the wells in the small islands may happen due to lack of sanitation and 
awareness of appropriate water health and sanitation practices. Surface water availability is a 
problem in some islands, which rely exclusively on groundwater. Rainwater harvesting using 
roof systems is widespread in Fiji but the limited risk perception of rural people may fail to 
take into account the possibility of extreme climate events and drought, which results in 
providing a small capacity of storage instead of a larger capacity. Some conflicts have 
occurred over surface water availability, in particular for irrigation. A considerable amount of 
potable water is lost in the water supply system as a result of background leakage and 
frequent bursts and several areas face problems with either too high or too low water 
pressure (SOPAC, 2007). 



 

 

 
11200758-002-ZWS-0003, Version 0.2, November 12, 2018, final 
 

 
Comparative Assessment of Drought Hazard and Risk Modeling Tools 
 

83 of 1621 

 

 
Groundwater extraction occurs on both the large islands and small low-lying islands, but the 
groundwater issues and challenges in these different physical environments differ. 
Groundwater is found in superficial and medium-depth strata on the larger islands of Viti Levu 
and Vanua Levu and some large islands, in either fractured rock or sedimentary formations. 
Significant groundwater deposits, such as the Nadi Valley coastal aquifer, on the large islands 
are available and are under pressure for development. Groundwater resources on small 
islands play a very different role. Some islands have shallow groundwater lenses in sand 
beds or coral formations, which lie on marine water and can be readily exhausted. The 
fragility of these groundwater lenses means that they need to be carefully managed1. 

6.1.3 Climate 
Temperature records from Pacific Island observation stations show warming over the past 50 
years, with trends mostly between 0.08 to 0.20°C per decade, consistent with global warming 
over this time. Unlike temperature, rainfall across the Pacific Islands displays large year-to-
year and decade-to-decade changes in response to natural climate variability. Over the past 
50 years, rainfall has increased northeast of the South Pacific Climate Zone (SPCZ) and 
declined to the south (Australian Bureau of Meteorology and CSIRO, 2011). 
 
Based on global climate model projections, the Australian Bureau of Meteorology and CSIRO 
foresee increased rainfall within the SPCZ in the wet season in particular due to increased 
atmospheric moisture content in a warmer climate. Although authors mention that results of 
the climate scenarios should be interpreted with care, they indicate that a widespread 
increase in the number of heavy rain days (20–50 mm) in the Pacific is very likely, while 
droughts are expected to occur less often2. 

6.1.4 Drought history 
In Fiji almost all droughts are associated with the El Niño phenomena, but not all El Niño 
occurrences lead to droughts. Table 6.2 provides an overview of the officially declared 
droughts between 1965 and 2000. Most El Niños start in the Southern Hemisphere autumn of 
the year listed in Table 6.2 and continue until the autumn of the following year. However, 
there are exceptions with events beginning later than normal or finishing earlier than normal. 
In Fiji, the National Disaster Management Office (NDMO) is the government agency that 
officially declares the state of drought (Fiji meteorological service, 2003). 
 
Reported impacts of droughts include decreases in the production of sugar cane, rice, cotton, 
coconuts and pineapples as well as livestock mortality. Also, fire breakouts were reported and 
the forestry sector was adversely affected. In various drought periods a lack of drinking water 
supply occurred, mainly in rural areas, with associated health implications due to the reduced 
quality of the drinking water. Low stages of rivers during drought periods are reported to 
cause saline water intrusions. The economic impact of the damages due to the drought in 
1998 was estimated by the World Bank (World Bank, 2000) to be between $275 million to 
$325 million Fijian. 
Disaster data from EM-DAT (Figure 6.1Figure 6.1), shows a clear ENSO-dependency. The 
three strongest historic El Niño years (1982/1983, 1997/98 and 2015/16), appear associated 
with substantial drought afflicted populations: in 1982/183 31.000 people were affected, in 
1997/1998 263.455 people and in 2015/2016 67.000 people. 
 
 
 



 

 

 
 
 
 
 

 
Comparative Assessment of Drought Hazard and Risk Modeling Tools 

 

11200758-002-ZWS-0003, Version 0.2, November 12, 2018, final 
 

84 of 1621? 
 

Table 6.2 Overview of officially declared droughts included an indication of severity, association with El Niño 
phenomena, and specifics on the affected area. Source: Fiji meteorological service, 2003. 

Period Severe El Niño Affected area 
1965 no yes Kabara (Lau island group) most affected 

1966 yes no  
1967 no no  
1968 no no  
1969-1970 yes yes  
1972-1973 yes yes Kabara, Lau, Ono-I-Lau, and Lakeba most affected 

1976-1978 yes yes Viti Levu and southern part of Lau island  group most 
affected 

1979-1980 no no  
1982-1983 yes yes Whole of Fiji, but most extreme in west Viti Levu 

1986-1987 yes yes Whole of Fiji, but most extreme in west Viti Levu 

1992-1993 no yes Western Islands most affected 

1997-1998 yes yes Whole of Fiji, but most extreme in western islands 

 
 

 
Figure 6.1 Drought events in Fiji recorded by EM-DAT. 
 

6.2 Assessment of available drought hazard models 

6.2.1 Comparison and validation of models at the country scale 
For the relevant drought hazard indices available from the global datasets (section 2.2.1), 
graphs were produced of the percentage-area of the country experiencing drought conditions 
for three drought levels:  moderately dry (index value below -1), severely dry (index value 
below -1.5) and extremely dry (index value below -2). All graphs are shown in Appendix A4). 
In these graphs, the registered droughts from EM-DAT and the Fiji Meteorological Service are 
plotted as well. Based on the graphs, the overlap of global drought hazard with reported 
droughts was assessed as well as the comparability of datasets and indices. SPI1 was left 
out of the comparison because the results are relatively spikey and could not be compared to 
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drought events at a yearly time scale. For Fiji, with its limited land area, results have to be 
interpreted with care. As can be viewed in the Figures in Appendix A4, the data in the graph 
show relatively coarse variations in percentage of the country in drought. 
 
Table 6.3Table 6.3 gives an overview of the results for Fiji, showing that five of the seven 
reported droughts are very well detected by all drought hazard indices from the global 
datasets. However, the reported drought events from 1986 and 1997 were not found in any of 
the signals from the dataset-index combinations. 
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Table 6.3 Results of the country-scale assessment of globally available drought hazard dataset-index 
combinations. In the table, years with registered drought events are shown in black and years without 
registered drought events, but drought hazards shown by the dataset-index combinations are shown in red. 
Corresponding graphs can be found in Appendix A4. 
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In the 30-year period that was assessed, the global models indicated three other drought 
years, which were not registered as drought events by EM-DAT or the Fiji Meteorological 
Service. For 1985 and 1996 drought hazards were observed from all dataset-index 
combination. For 1985 the SPI3 and SPEI3 indices of all datasets showed more or less 
pronounced drought events. Except for this event in 1985, the comparability of the dataset-
index combinations was very high showing either a pronounced drought or no drought. 

6.2.2 Validation with local data 
For Fiji only two GRDC measurement stations were available for this validation exercise, with 
a time-length of 24 months. Both measurement stations were, moreover, positioned, on one 
of the islands, Viti Levu (Figure 6.2Figure 6.2). 
 
 

 
Figure 6.2 - Spatial distribution of GRDC measurement stations available for use in Fiji and their performance 
values for the percent bias, and the Pearson correlation coefficient. 
 
Both PCR-GLOBWB and WaterGAP show an average performance in these stations, both 
when looking at the correlation coefficient as well as at the percent bias. For WaterGAP, 
correlation coefficients found ranged from 0.75 up to 0.91, whilst percent bias values varied 
from 31.4% up to 41.0%. PCR-GLOBWB’s percent-bias values are in line with those of 
WaterGAP running between 44.9% to 51.3%. PCR-GLOBWB’s performance on the 
correlation coefficient is, however, a little lower with values ranging from 0.32 to 0.40. 
 
Hydrographs of both stations are plotted in Figure 6.3Figure 6.3. The hydrographs generally 
reflect well the difference in performance indicators between the two models, with WaterGAP 
performing much better overall. WaterGAP is generally able to catch the hydrological 
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seasonal and inter-annual variability, while PCR-GLOBWB shows more difficulties in 
expressing both peak- and low-flows. 
 
The spatial distance between the two discharge measurement stations is, for this particular 
case, relatively small. Hence, when looking at the two hydrographs one can see that the two 
observation stations are being connected to the same grid-cell providing similar discharge 
estimates to both stations. In order to correctly deal with this, one should always account for 
the mismatch in spatial and/or temporal resolution between the modelled data used and the 
area or station of interest. In this particular case, coupling two discharge observation stations 
to a single discharge-cell does not provide much additional information. Usually, the most 
downstream station, or the station with the highest performance metrics, is used. In this 
particular case that would be station 5172200 (right sub-plot). 

 
Figure 6.3 Hydrographs visualizing the performance of PCR-GLOBWB and WaterGAP relative to the 
historical observations. 
 

6.2.3 ENSO analysis 
For Fiji, the share of land area exposed to drought seems to be significantly lower during La 
Niña (LN) years compared to El Niño (EN) and Neutral (N) years, both for the SPI and SPEI 
and for most model runs and accumulation time-periods (see Figure 6.4Figure 6.4). On the 
other hand, EN years are shown not to result in elevated median values of the total land area 
exposed to drought, as compared to the neutral conditions. SSFI-1 values show an opposite 
signal for both WaterGAP and PCR-GLOBWB. Again, EN and N years seem to result in 
similar median values of exposure to drought whilst LN years indicate an elevated median 
drought exposure. 
 

 
Figure 6.4 Area in drought in Fiji during El Niño (EN), La Niña (LN), or neutral years using the SPI, SPEI and 
SSFI drought indicator. The open symbols show the results for WaterGAP while the filled symbols show the 
results for PCR-GLOBWB. Different colors indicate the different accumulation periods used: 1 month (black), 
3 months (blue) and 12 months (red). 
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Given Fiji only consists of a few grid-cells when using the global models, it is difficult to 
identify any significant spatial patterns. Nevertheless, we can see from the results visualized 
in Figure 6.5Figure 6.5 and Figure 6.6 that both models seem to be relatively consistent when 
looking at the change in drought frequency between EN and non-EN years or LN and non-LN 
years. Here, EN years indicate to lead to a significant decrease in drought frequency in most 
parts of Fiji. LN years, on the other hand, lead to increased drought frequency across a 
majority of the land area. 
 
Correlation coefficient values between JMA SST and SSFI-1 are shown to be reasonably high 
for both WaterGAP and PCR-GLOBWB with correlation values around ~0.3-0.5 and ~0.5-0.7, 
respectively. Optimal lag times seem to lie around 6-9 months. Whilst PCR-GLOBWB does 
not make any spatial differentiation in optimal lag-time, WaterGAP indicates significantly 
lower optimal lag-times periods for the northern Island of Fiji at ~2-4 months. 

 

 
Figure 6.5 Spatial distribution of area with a significant increase, decrease or no change in frequency of 
drought months when comparing the El Niño years with the non El Niño years and the La Niña years with the 
no- La Niña years. Left sub-plots show the results for PCR-GLOBWB, right sub-plots show the results for 
WaterGAP. 
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Figure 6.6  Spatial distribution of optimal Pearson correlation coefficient between continuous JMA 
SST values indicating ENSO conditions and the SSFI-1 drought indicator. Left sub-plots show the optimal 
correlation coefficient, right sub-plots show the lag-time that corresponds to the best correlation coefficient 
found. Results for both PCR-GLOBWB and WaterGAP are visualized. 

6.3 Assessment of drought impact and risk platforms and datasets 

6.3.1 Maps of overall drought impact and risk 
Country scale maps based on the Global map of drought risk from JRC are not available for 
Fiji. 

6.3.2 Drought impact on population 
The IWMI data portal provides a map with information related to drought impacts on 
population for all countries in the world: per capita mean annual river discharge (Figure 6.7). 
For Fiji it shows that the annual discharge per person is generally low to medium at Viti Levu 
and somewhat higher at Vanua Levu. 
 

 
Figure 6.7 Map providing impact (exposure/vulnerability) to population available from IWMI water data 
portal: per capita mean annual river discharge (m3 per person). 

6.3.3 Impact on agriculture 
Maps of historical agricultural drought impacts are provided by the FAO-platform “Agricultural 
Stress Index and precipitation anomalies” (Figure 6.8). This FAO-platform provides a map of 
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the Agricultural Stress Index (ASI; % cropland affected by drought) for each year since 1985. 
Table 6.4 provides an overview of the years with coverage of approximately 25% of the 
country, or more, with high to very high ASI levels and matching drought years based on 
registered droughts and from the global drought hazard models (see section 6.2.1). According 
to the ASI maps, 2 out of 31 years in the monitoring period show large areas with high levels 
of agricultural drought stress. None of these years were listed as a registered drought year, 
nor were they shown as significant drought hazard by the global models. This is not in 
agreement with the number of drought years that were registered for their impact on 
agriculture by the Fiji meteorological service in 1982/83, 1986/87, 1992/93, and 1997/98 
(section 6.1.4). 
 

 
Figure 6.8 Map from FAO-platform “Agricultural Stress Index and precipitation anomalies for a 
relatively dry year. 
 

 

years with 
high ASI (S1)

Registered 
droughts

Hazard in 
global 

models
2003 N/A
2004 N/A
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Table 6.4 Years with high ASI values during the first growing season covering 30% or more of the 
country (FAO platform33) compared to registered droughts and drought hazards as determined by the global 
models (see section 6.2.1). 
 

 

6.3.4 Impact on hydropower 
Not available. 

6.3.5 Impact on the overall economy 
A map presenting a socio-economic drought vulnerability index is available from the IWMI-
portal (Figure 6.9). The IWMI map shows a medium level of socio-economic vulnerability but 
does not provide any spatial differentiation at the sub-national level. This is not fully in-line 
with the country characteristics, as the Fiji meteorological service reported relatively high 
impacts during drought periods (section 6.1.4). 
 

                                                   
33 http://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=FJI 
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Figure 6.9 Map of the socio-economic drought vulnerability index from IWMI-portal. 

6.3.6 Impact on municipal and industrial water needs 
Various maps are available from the Aqueduct Water Risk Atlas that relates baseline water 
stress to industrial sectors (mining, food & beverage, chemicals, semi-conductor, oil and gas, 
mining, construction materials, textiles). However, there does not seem to be any variation in 
base line water stress for the different sectors. Also, no independent drought impact 
information for these industrial sectors was available for the case study countries. Hence, no 
further assessment of these impact maps was performed. 
 

6.4 Evaluation of forecasting and monitoring systems 
No information available. 
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7 Results - Malawi 

7.1 Drought risk related country characteristics 

7.1.1 Introduction to the country 
Malawi is located in the southeast of the African continent and entirely landlocked 
by Zambia in the northwest, Tanzania in the northeast and Mozambique to the east, south 
and west34. Malawi is over 118,000 km2 with an estimated population of 16,777,547 (July 
2013). Table 7.1 provides an overview of the main characteristics of Malawi. 
 
Table 7.1 - The main characteristics of Malawi. 

Geography 
 Total Area 118,484 km2 35 

Land 80% (94,787 Million km2) 

Water 20% ( 23,697 km²) 

Highest Elevation 3000 m 

Land Use 
 Arable 20.7% 

Perm. Crop 1.18% 

Other 78.14% (2014)36 

People 
 Population 16,777,547 Million (2013.) 

Population Growth Rate 3.1 % (2010-2015)37 

Economy 
 GDP growth rate 

GDP per capita 
5.6% (2014) 
482 USD 201638 

Water Statistics 
 Lowlands Avg Rainfall 

Highlands Avg Rainfall 
900 mm/year 
1400 -2200 mm/year 

 
Malawi was colonized by the British from 1891 until 1953. In 1964 the country became 
independent and currently it is a multi-party democracy. It is one of the least developed 
countries of the world39. The countries main income originates from agriculture and the main 
part of the population lives in rural areas. The government highly relies on developmental aid. 
Life expectancy has dropped since the 1980s because of the spread of HIV/AIDS but is now 
starting to increase from 47-49 years in 2005 to over 60 years in 2015 (Reddy, 2016). 
 
The country’s topography is very heterogeneous.  The Great Rift Valley runs from the north to 
the south through the country. The landscape around the valley consists of large plateaus at 
an elevation of around 800-1200m, but with peaks as high as 3000m.  The country’s climate 

                                                   
34 https://en.wikipedia.org/wiki/Malawi 
35 United Nations, 2013.  (https://unstats.un.org/unsd/demographic/products/dyb/DYB2013/Table03.pdf) 
36 New-Agriculturist (http://www.new-ag.info) 
37 Data.un.org - CountryProfile 
38 Trading economics: https://tradingeconomics.com/malawi/indicators ; accessed date 22-05-18 
39 UN list of Least Developed Countries 

https://en.wikipedia.org/wiki/Zambia
https://en.wikipedia.org/wiki/Tanzania
https://en.wikipedia.org/wiki/Mozambique
https://tradingeconomics.com/malawi/indicators
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is tropical, but due to its high elevation temperatures are relatively low (McSweeney et al., 
2010). 
 
The country is densely populated and many farmers have to cultivate their crops on steep 
hillsides and often with inadequate soil and water conservation. Problems such as soil 
erosion and the resultant siltation of rivers and lakes are worsening, which is further 
increased by high levels of deforestation40. 

7.1.2 Hydrology and water resources 
Malawi is relatively rich in water resources. Water is stored in the form of lakes, rivers and 
aquifers41 with the largest lake being Lake Malawi. The availability of water resources is 
highly variable over the year – nearly 90% of the runoff occurs between December and June. 
The country is very vulnerable to risks related to droughts and floods RSMI, 2009. 
 
There are two major drainage systems: 
• The largest is the Lake Malawi system which includes most of the country (91%), which 

is part of the Zambezi River basin. The Shire River is the only outlet from the lake with 
an average flow of only 400 m3/s. 

• The Lake Chilwa system is shared with Mozambique. Lake Chilwa is an endorheic basin 
draining rivers from the eastern slopes of the Shire Highlands, the Zomba Plateau and 
the northern slopes of the Mulanje Massif. Large amounts of water are lost to 
evaporation. 

 
There are two main aquifers in Malawi: 
• The Precambrian weathered basement complex, which has a low yield (up to 2 l/s); 
• The quaternary alluvial aquifers of the lakeshore plains and the Lower Shire valley, 

which are high yielding (up to 20 l/s) and thus a valuable groundwater resource. 
 
Nearly all of Malawi’s renewable water resources originate from within the country itself 
(approximately 17.28 km3/year). Approximately 1 km3/year originates from Mozambique. 

7.1.3 Climate 
The country’s climate is tropical, but temperatures are relatively low due to its high elevation. 
In winter (JJA) temperatures drop to around 18-19˚C, and in the warmest months (September 
to January) temperatures range from 22-27˚C85.  The rainfall amounts and patterns are 
mainly influenced by the Inter-Tropical Convergence Zone and the El Niño Southern 
Oscillation (ENSO). There is a large inter-annual variability in wet season rainfall.   In 
southern Malawi the wet season normally lasts from November to February with around 150-
300 mm rainfall per month, whereas in northern Malawi rainfall continues into March and 
April. The higher altitude regions receive the highest rainfall amounts. Temperature is 
projected to increase between 1.5 up and 5.0 degrees Celcius74. 
 
There is large uncertainty between models on projected change in annual rainfall ranging 
from -13% to +32%. Overall, the projections tend to show decreases for the dry season and 
increases for the wet season with more rain falling as heavy events in general85. Historical 
trends are hard to detect due to the large inter-annual variability. 

                                                   
40 New-Agriculturist (http://www.new-ag.info) 
41 FAO, AQUASTAT, Malawi, accessed date 11-08-2017 
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7.1.4 Drought history 
Table 7.2 provides an overview of the worst droughts events in Malawi up to 2009. Most 
recently, in 2016, Malawi was hit by a drought that affected most of the Southern part of 
Africa42 and was considered to be the worst drought in 35 years43,44.  In 2005 the drought 
conditions were so severe such that the country entered a food crisis and the government 
declared a national disaster. In addition, the 2006 wet season rainfall was still very low85. 
 
Table 7.2 - Worst drought events over Malawi over the period 1968-2008 derived from station data (obtained 
from RMSI (2009)). 

 
 
The EM-DAT database summarizes the historic drought events in Malawi over the period 
1990-2013 (Figure 7.1). In this period seven droughts were reported for Malawi: 1987, 1990, 
1992, 2002, 2005, 2007, 2012 with 21,578,702 people affected in total over these years 
(Masih et al., 2014). Nearly all droughts occurred during ENSO years. 
 

 
Figure 7.1 - Drought events in Malawi recorded by EM-DAT. 
 
When droughts occur, Malawi suffers large losses because the country highly depends on its 
agricultural production, especially from tobacco and maize45. In 2009, RMSI conducted an 
assessment of Malawi’s Economic Vulnerability related to disaster risk for the World Bank72. 
                                                   

42 https://en.wikipedia.org/wiki/Malawi 
43 http://www.fews.net/southern-africa/malawi/key-message-update/march-2016 
44 http://www.fews.net/southern-africa/malawi/key-message-update/may-2016 
45 Pauw, K., Thurlow, J. and Van Seventer, D. Droughts and floods in Malawi, Assessing the economywide effects, 

IFPRI Discussion Paper 2010, pages: 34. 
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They used daily rainfall data from 45 meteorological stations, which cover the 40 year period 
(1968 – 2008) to calculate the November-March rainfall totals and SPI values in order to 
identify droughts. The resulting droughts are meteorological droughts, thus (upstream) water 
use and management are not considered herein and may therefore not match up with the 
droughts as recorded in the EM-DAT database. 

7.2 Assessment of available drought hazard models 

7.2.1 Comparison and validation at the country scale 
For the relevant drought hazard indices from the global datasets available (section 2.2.1), 
graphs were produced of the percentage-area of the country experiencing drought conditions 
for three drought levels:  moderately dry (index value below -1), severely dry (index value 
below -1.5) and extremely dry (index value below -2). All graphs are shown in Appendix A5. 
In these graphs, the registered droughts from EM-DAT and RMSI are plotted as well. Based 
on the graphs, the overlap of global drought hazards with reported droughts was assessed as 
well as the comparability of the datasets and indices. SPI1 was left out of the comparison 
because the results are relatively spikey and could not be compared to drought events at a 
yearly time scale. 
 
Table 7.3 gives an overview of the results for Malawi, showing that the reported droughts are 
not always well predicted by the drought hazard indices from the global datasets. For more 
than 50% of the calculated dataset-index combinations, the calculated drought hazard is not 
very pronounced or was barely visible, if at all. Dataset-index combinations that show a 
relatively good overlap with registered drought events are those that include the SPEI3 and 
SPEI12, as well as SSFI-1, based on the WaterGAP dataset. 
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Table 7.3 Results of the country-scale assessment of globally available drought hazard dataset-index 
combinations. In the table, years with registered drought events are shown in black and years without 
registered drought events but drought hazards shown by the dataset-index combinations, are shown in red. 
Corresponding graphs can be found in Appendix A5. 
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The comparability of the dataset-index combinations is limited. In the 30 year period that was 
assessed, the global models indicated seven other drought years, which were not registered 
as drought events by EM-DAT. For individual dataset-index combinations false alarm rates 
range between 43 and 50%. The dataset-index combination (GLS-SPI12) has a relatively 
high false alarm rate of 67%. For the years with registered drought events, the comparability 
of the droughts shown by the different dataset-index combinations was lower than for the 
drought years detected by the drought hazard indices from the global datasets. 

7.2.2 Validation with local data 
Malawi is well-covered with GRDC measurement stations. In total, 48 GRDC stations were 
available for use with an average time-series length of 95.1 months. The upstream catchment 
area of most stations is relatively small. As shown in Figure 7.2Figure 7.2 the observation 
stations available for use were equally distributed across the entire country. 
 
Figure 7.2Figure 7.2 shows the results for both GHMs evaluated for the two performance 
metrics taking into account all available stations. Whereas correlation coefficient values are 
reasonably good for both PCR-GLOBWB (median: 0.56, 0.02-0.93) and WaterGAP (median: 
0.70, 0.04-1) results for the percent bias indicate relatively large absolute deviations. 
WaterGAP has a median percent bias value of 130.7%, compared to PCR-GLOBWB, which 
gives a median percent bias value of 396.9%. 
 
 

 

 
Figure 7.2 - Spatial distribution of GRDC measurement stations available for use in Malawi and their 
performance values for percent bias and the Pearson correlation coefficient. 
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Figure 7.3 - Distribution of the percent bias  values for both PCR-GLOBWB and WaterGAP. X-axis 
represents all stations available for analysis in Malawi. Y-axis represents the percent bias values. Note that 
the Y-axis is given in a logarithmic scale. 
 
Figure 7.4Figure 7.4 shows for two selected stations the hydrographs indicating the 
performance of both models. Both models are generally able to resemble the historical 
hydrological conditions well, both when looking at the absolute values and its temporal 
pattern, for the station depicted in the left sub-plot.  As a result, both the correlation coefficient 
and the percent bias values are relatively high for both models. With correlation coefficients 
of: 0.77 (WaterGAP) and 0.82 (PCR-GLOBWB). Percent bias values of 98.64% and 235.6% 
were found for WaterGAP and PCR-GLOBWB, respectively. 
 
In constrast, both WaterGAP and PCR-GLOBWB have difficulties generating the very low 
discharges that were observed at the station depicted in the right sub-plot. Although the 
temporal pattern might be similar as reflected by reasonably good correlation coefficient 
values (WaterGAP: 0.59; PCR-GLOBWB: 0.49), both models  significantly overestimate the 
absolute discharge levels with high percent bias values as result (WaterGAP: 1435.7%, PCR-
GLOBWB: 2447.7%). Hydrographs for all other stations in Malawi are available as a 
supplement to this document. 
 

 
Figure 7.4 Hydrographs visualizing the performance of PCR-GLOBWB and WaterGAP relative to the 
historical observations at two selected stations. 
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7.2.3 ENSO analysis 
For Malawi we find, finally, that when looking at the SPI and SSFI, the share of land area 
exposed to drought is generally high under neutral conditions and relatively lower during El 
Niño (EN) or La Niña (LN) years (see Figure 7.5Figure 7.5). For the SPEI drought indicators 
the figure is again more dispersed, with relatively long accumulation periods for both PCR-
GLOBWB and WaterGAP showing that exposure to drought is relatively elevated during EN 
years and relatively lower during LN years. For shorter accumulation time-periods no 
consistent pattern exists between the two model runs. PCR-GLOBWB shows relatively higher 
drought exposure during LN compared to the EN and N years when using accumulation time-
periods of 1 and 3 months. WaterGAP, on the other hand, indicates relatively lower median 
drought exposure during LN compared to EN and N years and depicts the N years as years 
with significantly elevated drought exposure. 
 
 

 
Figure 7.5 Area in drought in Malawi during El Niño (EN), La Niña (LN), or neutral years using the SPI, SPEI, 
and SSFI drought indicator. The open symbols show the results for WaterGAP while the filled symbols show 
the results for PCR-GLOBWB. Different colours indicate the different accumulation periods used: 1 month 
(black), 3 months (blue) and 12 months (red). 
 
When looking at the spatial distribution of changes in drought frequency (Figure 7.6Figure 
7.6) we find that for the whole country of Malawi the frequency of drought months seem to be 
significantly decreasing, both during EN and during LN, as compared to non-EN and non-LN 
years. This is in correspondence with the relatively high spatial exposure to drought during N 
years compared to EN and LN years depicted in the previous figure. 
 
Both PCR-GLOBWB and WaterGAP show relatively low optimal correlation coefficient values 
for the entire country of Malawi at ~0.3-0.4 (see Figure 7.7). No significant spatial distribution 
was found in the optimal correlation coefficient values for either of the models. Optimal lag-
times at which the best correlation coefficient values were found are relatively long for Malawi 
at ~6-12 months. For WaterGAP these optimal lag-times seem to be, moreover, relatively 
shorter (~6-9 months) as compared to the optimal lag-times found under PCR-GLOBWB (~9-
12 months). 
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Figure 7.6 Spatial distribution of area with a significant increase, decrease or no change in frequency of 
drought months when comparing the El Niño years with the non-El Niño years and the La Niña years with the 
non-La Niña years. Left sub-plots show the results for PCR-GLOBWB, right sub-plots show the results for 
WaterGAP. 
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Figure 7.7  Spatial distribution of optimal Pearson correlation coefficient between continuous JMA 
SST values indicating ENSO conditions and the SSFI-1 drought indicator. Left sub-plots show the optimal 
correlation coefficient, right sub-plots show the lag-time that corresponds to the best correlation coefficient 
found. Results for both PCR-GLOBWB and WaterGAP are visualized. 
 

7.3 Assessment of drought impact and risk platforms and datasets 

7.3.1 Maps of overall drought impact and risk 
Country scale maps are presented that are based on the Global map of drought risk from 
JRC (Carrão et al., 2016) (Figure 7.8). Although the presented indices of drought hazard, 
exposure, vulnerability, impact and risk are dimensionless factors based on an aggregation of 
information and data, they provide a good first impression of the drought risk situation in the 
country. For Malawi, the drought hazard is limited in large parts of the country, which is not in 
line with the assessments of drought hazards with global models and the descriptive 
information of the country characteristics. This difference is probably caused by the choice of 
the drought hazard index: for the JRC map the drought event is determined by means of the 
weighted anomaly of standardized precipitation index (WASP), while in the analysis for this 
comparative assessment we used SPI, SPEI and SSFI indices to estimate drought events. 
 
Exposure and vulnerability are high to very high across the entire country, which is in line with 
the country information (e.g., low GDP, large part of population in rural areas, high 
dependency on agriculture and development aid). The combination of relatively low levels of 
hazard in large parts of the country and high exposure and vulnerability, leads to high drought 
impact and low to high risk levels. 
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Figure 7.8 Maps from the Global map of drought risk developed by JRC (Carrão et al, 2016) showing 
the following indices: drought hazard (A), exposure (B), vulnerability (C), impact (exposure x vulnerability) 
(D), and risk (hazard x impact) (E). 

7.3.2 Drought impact on population 
Malawi is a densely populated country with extremely high rates of poverty. In 2016, the 
poorest 20% of Malawi’s twenty-three million citizens existed on an income of approximately 
70 cents a day based on World Bank data. This population is not spread evenly throughout 
the country but is densest in the southern region (near Blantyre) and along the western 
border with Zambia and Mozambique (near Lilongwe), which also tends to be drier and more 
strongly influenced by El Niño. These El Niño influences do not appear to be captured well by 
the PCR-GLOBWB and WaterGAP analyses shown in Figure 1.6, which generally show 
significant decreases in the chances of drought during El Niño years. On the other hand, 
estimates of exposure/vulnerability as presented in Figure 7.9Figure 7.9 (spatial patterns of 
the IWMI exposure maps) appears reasonably similar to surface water anomalies estimated 
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for the recent 2015-1646. Since runoff is a relatively small part of the hydrologic budget, 
rainfall deficits can be amplified, resulting in much larger relative runoff reductions. These 
values in 2015-16 were as low as 35% of a 1982-2015 baseline over Southern Africa. The 
IWMI exposure calculations provide a spatially coarse, but fairly realistic map of potential 
impacts. 
 

 
Figure 7.9 Maps providing impacts (exposure/vulnerability) on population as made available from the 
IWMI water data portal, from left to right: per capita mean annual river discharge (m3 per person); agricultural 
water crowding with respect to mean annual precipitation (population m3); agricultural water crowding with 
respect to mean annual river discharge (population m3). 

7.3.3 Impact on agriculture 
Malawi’s agricultural situation needs to be placed into historical context (Figure 7.10). 
Population has grown rapidly since the early 1980s, more than tripling by 2017. As a result, 
the per capita harvested area has declined by ~80%, from approximately 170 hectares per 
person in 1981 to around 100 hectares per person in 2017 (data: FAOSTATE, augmented 
with recent estimates from the US Department of Agriculture). 
 

 
Figure 7.10 Malawi population and per capita harvested area. 

                                                   
46https://www.fews.net/sites/default/files/documents/reports/FEWS%20NET_Southern%20Africa%202015_16%20Drought%20

Map%20Book_20160318_0.pdf 
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Over the same time period (1981-2016), yields for the main crop (maize) can be described as 
being relatively stationary over the 1981-2006 time period (Figure 7.11, left), with a marked 
increase being noted in most years after 2008. Combining population and maize production 
together, we can examine per capita cereal production (Figure 7.11, right). Overall, we can 
see that Malawi’s per capita production has improved substantially since the 1980s and 
1990s. We do find, however, a number of recent years with serious per capita production 
shortfalls: 1991/1992, 1992/1993, 2004/2005, 2014/15 and 2015/16. 
 

 
Figure 7.11 Malawi Maize Yields and Per Capita Maize Production 
 
To support a forecast context, we can also express Malawi maize production in terms of 
detrended maize production estimates (Figure 7.12). As is common in many agricultural 
analyses, a linear trend was fit to the data, and this linear regression was used to remove the 
impacts of technological innovation and other non-climatic influences. This time series 
incorporates fluctuations in harvested areas and yields. We only show data since 1990, 
because the yield data show a suspicious lack of inter-annual variability in the 1980s (Figure 
7.11, right). This time series indicates substantial multi-year episodes with suppressed yields. 
Note however that only some of these years are El Niño years. We will look at the 
predictability of these variations below. 
 

 
Figure 7.12 Detrended maize production anomalies. 
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This analysis, and prior FEWS NET analyses for the past 20 years, suggests that Malawi 
does experience periodic drought-induced crises that negatively impact yields, contribute to 
high cereal prices and help create very severe levels of food insecurity. For example, in 2016, 
some 5 million Malawi citizens required humanitarian assistance and were extremely food 
insecure. Malawi is a country with a dense population and complex topography and climate. 
As such, impact analyses will likely be very sensitive to the quality of the rainfall data used to 
drive the analyses. Maps such as the Aqueduct Water Risk Atlas baseline water stress with 
respect to agriculture (Figure 7.13) and baseline water stress with respect to hydropower 
(Figure 7.14) appear to underestimate the risks associated with severe drought events. 
 
Hydrologic analyses by FEWS NET47, focused on the 2015/16 drought, indicate large 
reductions in runoff and severe water stress. We find this stress associated with recent 
drought impacts identified in the EM-DAT data base and FEWS NET reports (2002, 2005, 
2012, 2015). Some, but not all, of these years appear associated with below-normal maize 
production (2002, 2005, 2015/16; Figure 7.12). The Agricultural Stress Index, provided by the 
FAO platform, shows a good match with below-normal maize production (see Table 7.4 and 
Figure 7.13, right). 
 

 
Figure 7.13 Maps of historical agricultural drought impacts. Left: Map from Aqueduct Water Risk Atlas 
providing baseline water stress with respect to agriculture; Right: Map from FAO-platform “Agricultural Stress 
Index and precipitation anomalies for a relatively dry year. 
 
 
Table 7.4 Years with high Agricultural Stress Index (ASI) values during the first growing season 
covering 30% or more of the country (FAO platform48) compared to registered droughts and drought hazards 

                                                   
47 http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-16-0167.1 
48 http://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=MWI 
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determined with global models (see section 7.2.1). In 2004, the drought hazard from the global models was 
moderate (+/-). 
 

 

7.3.4 Impact on hydropower 
The online Aqueduct Water Risk Atlas provides maps with baseline water stress with respect 
to electric power, which is very similar to the map with baseline stress with respect to 
agriculture. For Malawi it can be observed that for a large part of the country the stress level 
is relatively low. No spatial patterns can be observed. 
 

 
Figure 7.14  Map from Aqueduct Water Risk Atlas providing baseline water stress with respect to 
electric power. 

7.3.5 Impact on overall economy 
Droughts modulate the economy of Malawi in many important ways. Overall, IWMI estimates 
that Malawi has a high level of socio-economic drought vulnerability (Figure 7.15, left) which 
seems in-line with recent history, analysis by FEWS NET and the World Food Programme, 
and recurrent severe humanitarian crises. Given fairly high levels of annual rainfall, it is 
possible that Malawi may have low levels of baseline water stress (Figure 7.15, middle), but 
reliance on average conditions may not be particularly informative from a disaster risk 
perspective. Estimates of Drought Vulnerability from the African Drought Observatory (Figure 

years with 
high ASI (S1)

Registered 
droughts

Hazard in 
global 

models
1992 x x
2003
2004 x (x)
2005 x x
2006 x
2016 N/A N/A
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7.15, right) indicate substantial variations across the country. The accuracy of these patterns 
requires further detailed analysis with additional information. 
 

 
Figure 7.15 Maps with drought impacts on the overall economy from different online platforms. From 
left to right: Socio-economic drought vulnerability index from IWMI-portal; Baseline Water stress – Default 
from Aqueduct Water Risk Atlas; Drought Vulnerability Index (sub-basin level) from the African Drought 
Observatory. 
 
Drought impacts agriculture, a key source of income, while also influencing the generation of 
hydropower (a direct economic benefit), which in turn supports additional industries. Droughts 
are associated with crop production deficits, which can in turn lead to cereal and food price 
increases. Figure 7.16 shows the recent year-to-year variations in Malawi’s GPD, expressed 
as percent changes (Data source: World Bank). Recent (1993-2016) GDP changes in Malawi 
are very weakly correlated with detrended production anomalies (r=0.22) and January 
NINO3.4 SSTs (r=0.14). 
 
We briefly examined newly available national retail maize price data (Figure 7.16) collected 
by FEWS NET at 12 markets located across Malawi. These are nominal prices and are not 
adjusted for inflation. The EM-DAT droughts reported in 2005/06, 2012 and 2015 are 
apparent in the data. The marked influence of the 2015/16 El Niño event is quite apparent. 
This may also emphasize the important non-local influence of El Niño events. By producing 
regional droughts across Southern Africa, ENSO events can modulate local food prices by 
creating both local crop production deficits and by supporting regional deficits that may also 
influence regional demand and regional food prices. 
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Figure 7.16 Year-to-year changes in Malawi GDP, expressed in percentages. 
 
 
To explore the impact of droughts, we look at the change in 2007 to 2017 August-to-August 
maize prices, i.e. the maize price change from one dry season to the next. Analysis of the 
correlation between these variations and monthly CHIRPS data for Malawi indicates 
interesting monthly variation. January and March rainfall are very weakly correlated with 
changes in prices. February rainfall exhibits a strong (-0.7) inverse correlation with price 
changes. Presumably, mid-season drought in-phase with the main grain filling period for 
maize has a more substantial influence on yield deficits. Price increases are well correlated 
(r=-0.74) with detrended production anomalies (shown above). Knowing the maize price in 
February coupled with February CHIRPS rainfall results in a very strong predictive 
relationship for August prices during the following austral winter (August), with an R2 valued 
of 0.83 with a substantial part of this predictability arising from the strong non-stationarity of 
Malawi cereal prices. Focusing rather just on the change between February price conditions 
and maize prices during the following August, we find a robust level of predictability 
(R2=0.63), suggesting that price and precipitation monitoring systems, acting together, 
provide good advance warning of future price changes. 
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Figure 7.17 A time series of retail maize prices in Malawi, based on the average of 12 markets. Data 
provided by FEWS NET. 
 

7.3.6 Impact on municipal and industrial water needs 
Various maps are available at the Aqueduct Water Risk Atlas that compare baseline water 
stress to industrial sectors (mining, food & beverage, chemicals, semi-conductor, oil and gas, 
mining, construction materials, textiles). However, there does not seem to be any variation in 
baseline water stress for the different sectors. Also, no independent drought impact 
information for these industrial sectors was available for the case study countries. Hence, no 
further assessment of these impact maps was performed. 
 

7.4 Evaluation of forecasting and monitoring systems 

7.4.1 Current drought monitoring and forecasting 
Forecasting in Malawi is primarily handled by the National Meteorological agency, which 
collaborates annually with the regional Climate Outlook Fora process. The Southern African 
Regional Climate Outlook Forum (SARCOF) is coordinated by the Southern African 
Development Community (SADC) Climate Services Centre (CSC) in Gabarone, Botswana. It 
covers all SADC Member States: Angola, Botswana, Democratic Republic of Congo, Lesotho, 
Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, 
Tanzania, Zambia and Zimbabwe. These climate forecasts are prepared on an annual basis, 
typically first appearing in September of each year. 
 
Forecasts from the National Multi-model Ensemble (NMME) and the International Research 
Institute (IRI) are also consulted. Climate forecasts are used in conjunction with national 
rainfall monitoring to inform national bulletins49 and the regional SADC agro-meteorological 

                                                   
49 http://www.metmalawi.com/bulletins/bulletins.php 
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bulletins50. During the main growing season (October to April) these bulletins are updated on 
a monthly basis 

7.4.2 Available operational systems 
 
The GeoCOF and GeoCLIM tool 
The GeoCOF tool, authored by CSC scientists and Tamuka Magadzire51 is used to guide 
these forecasts, along with other statistical analyses. Statistical forecasts, based on ENSO 
conditions and Indian Ocean sea surface temperature anomalies are the primary inputs into 
these forecasts.  These forecasts are updated during the course of the season and can be 
combined with observed precipitation to create a hybrid rainfall monitoring and prediction 
system. 
 
The National Multi-Model Ensemble 
The NMME (http://www.cpc.ncep.noaa.gov/products/NMME/) combines dynamic forecasts 
from 10 different coupled ocean-atmosphere models. These models and forecasts are 
updated monthly. 
 
IRI probabilistic seasonal forecasts 
These forecasts are produced based on logistic regression using a subset of the NMME 
models52. Empirical relationships between the NMME predictions and historical precipitation 
and temperature are used to guide tercile probability forecasts. 
 
ECMWF forecasts 
These are mentioned, but not evaluated since we lack access to the ECMWF forecasts. 
 
A summary of the main characteristics of the available monitoring and forecasting systems is 
given in Table 7.5. 

7.4.3 Model Evaluation and recommendation 
Here we evaluated a simple statistical forecast, consistent with a GeoCOF analysis, based on 
observed September NINO3.4 sea surface temperatures (SSTs, 5°S-5°N, 170°E-120°W). We 
also examined climate forecasts from one of the NMME models, the Coupled Forecast 
System Version 2, using forecasts based on observed September SSTs. To simulate the IRI 
tercile estimation process, we also bias corrected the precipitation forecasts and then 
evaluated hit rates.  We focused on predicting January-February-March rainfall in Southern 
Malawi (south of 14°S); the main growing season in the most drought sensitive part of the 
country. 
 
As the 1981-2016 results show (Figure 7.18), a modest but useful negative tele-connection 
exists with ENSO SSTs. While the R2 is quite low (24%), all severe droughts occurred in 
positive NINO3.4 seasons and all very wet years occurred during negative NINO3.4 seasons. 
The breakpoint for the bottom tercile of the observed rainfall is 588 mm. Using a simple 
regression predicting JFM precipitation using September SSTs only identifies 4 of the 12 dry 
years. The signature drought years of 1992 and 2005 are underestimated but were predicted 
to be below average. 
 

                                                   
50 http://www.sadc.int/news-events/newsletters/agrometerological-update/ 
51 http://chg.geog.ucsb.edu/tools/geocof/ 
52 http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/methodology/  
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Table 7.5 - Characteristics of drought monitoring and forecasting systems available in Malawi. 
 GeoCOF/  

GeoCLIM tool 
National 
Multi-Model 
Ensemble 

IRI 
probabilistic 
seasonal 
forecasts 

ECMWF 
forecasts 

Monitoring Yes No No No 
Forecasting Yes Yes Yes Yes 
Region/countries/areas Regional Global Global Global 
Spatial resolution Regional ~1 degree ~1 degree ~1 degree 
Datasets used Observed SSTs 

Observed Rain 
Initialized 
with Obs and 
reanalysis 

NMME Initialized 
with Obs 

Software and tools used GeoClim    
Indices presented Rainfall amount, 

tercile probability 
Rainfall 
anomaly and 
tercile 
probability 

tercile 
probability 

Rainfall 
amount 

Reflective of impacts Yes/no    
Forecast horizon 1-7 months 1-10 months 1-10 months 1-7 months 
Update frequency Can be monthly monthly monthly monthly 
Accessibility of forecast Moderate Easy Easy Moderate 
Method of access From SADC 

website 
Online Online Online 

Procedure / steps Reported via 
Agromet reports 

Updated 
automatically 

Updated 
automatically 

Updated 
automatically 

Resources required Human Expert w/ 
Computer 

Minimal Minimal Minimal 

Post-processing Probabilistic 
Forecasts can be 
interpreted based 
on thresholds 

Need to be 
downloaded 
for numerical 
analysis 

Need to be 
downloaded 
for numerical 
analysis 

Need to be 
downloaded 
for numerical 
analysis 

Hit rate (estimation) 5 of 12 droughts Always 
predicts 
drought due 
to dry bias 

2 of 12 
droughts 

N.A. 

 
 
We also examined the CFSv2 JFM forecasts for this region (Figure 7.19). The predicted 
rainfall is much lower than the observations, and very poorly correlated (R2=0.05). The 
signature drought years are predicted to be below-normal, but so are the wettest years in the 
1981-2016 record.  Bias correcting the CFSv2 forecasts and estimating drought hit rates 
based on forecasts of less than 588 mm identified only 2 of the 12 droughts. 
 
Assessment: While the skill associated with statistical models is modest for this region, there 
are evident changes in the underlying probability distributions supporting broad designation of 
‘average to above-average’ and ‘average to below-average’ based SST conditions. These 
assessments can be refined as the rainy season progresses by incorporating observed 
rainfall and updating and refining SST-based forecast assumptions. While the NMME models 
can provide very valuable information about the evolution of large scale SST patterns, they 
likely lack local skill for this region and season. 
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This general lack of skill of the NMME is not localized to Malawi, or even Africa, but applies to 
most regions of the globe (Figure 7.20 and Figure 7.21Figure 7.21). 
 

 
Figure 7.18 - Forecasts based on NINO3.4 SSTs 

 
Figure 7.19 - Forecasts based on CFSv2 Model Simulations 

y = -72x + 631 
R² = 0.24 

300

400

500

600

700

800

900

1000

400 500 600 700 800

So
ut

h 
M

al
aw

i R
ai

nf
al

l [
m

m
] 

Observed NINO3.4 SST Anomalies [C] 

Forecasts based on Sep NINO34 SST 
anoms and South Malawi JFM CHIRPS 

y = 0.6 + 3340 
R² = 0.05 

300

400

500

600

700

800

900

1000

300 400 500 600 700 800 900 1000

So
ut

h 
M

al
aw

i R
ai

nf
al

l [
m

m
] 

CFSv2 Forecasts for Malawi  [mm] 

CFSv2 JFM forecasts and South Malawi 
JFM CHIRPS 



 

 

 
11200758-002-ZWS-0003, Version 0.2, November 12, 2018, final 
 

 
Comparative Assessment of Drought Hazard and Risk Modeling Tools 
 

115 of 1621 

 

 

 
Figure 7.20 - 1982-2016 correlation between NMME ensemble average forecasts and CHIRPSv2 
 

 
Figure 7.21 - 1982-2016 correlation between NMME ensemble average forecasts and CHIRPSv2 
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8 Conclusions and recommendations 

8.1 Introduction 
This chapter provides an overview of our conclusions and recommendations based on the 
quantitative and qualitative analyses that were conducted during this study. In the previous 
chapters of this report the results of the analyses were described for each case study country 
individually. Here the conclusions and recommendations are described for each aspect and 
method of drought risk analyses that was assessed in this study, thereby aggregating the 
findings from the five case study countries. 

8.2 Country characteristics and reported droughts 
A concise but complete description of drought related country characteristics is an important 
starting point for a drought hazard and risk assessment. In addition it reveals the existing 
level of drought context knowledge of the country and it provides much needed background 
information to interpret analyses results or for further drought risk assessments. 
 
It is recommended to collect and describe the following aspects based on existing information 
and publications: 
• Socio-economic country characteristics. 
• Meteorological and hydrological characteristics (incl. inter- and intra-annual variability 

and the potential climatic teleconnections, like ENSO). 
• Key characteristics of the natural environment (e.g., orography, river basins, soils) as 

well as the land use (systems). 
• Water resources, water demand, and the relative water availability (level of water 

stress). 
• Historical droughts and drought impacts. 

8.3 Spatial time series analysis of global datasets 

8.3.1 Comparison of global datasets 
The various drought hazard indices from the global datasets showed varying correspondence 
to the registered drought events for the five case study countries (Table 8.1), ranging from a 
good match with registered events in (Afghanistan), a moderately good match (Fiji, Colombia) 
to a relatively poor match (Ethiopia, Malawi). Table 8.2 gives an overview of the dataset-index 
combinations that showed a good match with registered droughts for each of the case study 
countries. Based on this analysis, the SPEI3 index based on the WaterGAP dataset shows 
the best match with registered droughts, followed by SPEI3 and indices based on the Global 
Drought Monitor and PCR-GLOBWB datasets. 
 
The comparability of dataset-index combinations in detecting droughts varies between the 
case study countries (Table 8.2). For Fiji, the comparability was very high with all models 
showing pronounced drought hazards for 5 out of the 7 registered droughts, while the other 
two registered droughts were not detected by any of the models.  Also, for Afghanistan the 
comparability of the models for registered drought events was relatively high while for other 
models the comparability was limited for registered drought events. However, the dataset-
index combinations for Ethiopia showed high comparability for non-registered drought 
hazards. 
 
Table 8.1 Summary of registered and non-registered drought years, hit rates, false alarms, and comparability 
of dataset-index combinations. 
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Table 8.2 Overview of dataset-index combinations that showed a (very) good hit rate with registered droughts 
shown as “+” signs. Also high and low false alarm rates are shown, shown as red (+) and (-). Intermediate 
false alarm rates are not shown. 
 

 
 
Interestingly, the dataset-index combinations assessed in this project showed more/other 
drought hazards than were registered. The false alarm rates of dataset-index combinations 
was on average 45% (Table 8.1). This was particularly the case for Ethiopia and Malawi 
where many false alarms were modelled by the dataset-index combinations, while for Fiji the 
false alarm rates are relatively low (Table 8.2). The dataset-index combination GLS-SPI3 and 
GLS-SPI1-2 resulted in a high level of false alarms for 3 out of the 5 case study countries, 
while the false alarm rate for WaterGAP-SSFI was relatively low. The overestimation of 
drought hazards can have various causes. The dataset-index combinations may overestimate 
the drought conditions in the country, perhaps due to the critical threshold values set for the 
drought hazard indices. There can also be a mismatch in the timing of the modelled drought 
hazards and the registered events. This can be caused by an error in the models, but it is 
also likely that a drought event is registered (a year) later than the drought hazard occurs due 
to the time-lag of the impacts of drought events. Moreover, the modelled droughts only 
represent the hazard aspect of drought risk, while for the registered droughts the exposure 
and vulnerability to drought are also important. Hence, a drought does not necessarily have to 
result in adverse impacts. 
 
Unfortunately, at the time this research was performed, no global spatio-temporal datasets 
were available online that enabled us to assess other types of drought than meteorological 
drought and hydrological drought. It is however recommended that a similar analysis is made 
for agricultural drought and socio-economic drought if and when such datasets become 
available. 

8.3.2 Validation with local time series 
Using the two global models in the different country scale case studies to validate its results 
with local time-series we do not find large consistent differences in performance. No single 

registered
non-

registered
(+) (+, +/-) (+) (+, +/-) (+) (+, +/-) registered

non-
registered

Afghanistan 6 9 77% 97% 34% 60% 38% 47% high limited
Colombia 6 5 65% 83% 49% 93% 40% 48% limited limited
Ethiopia 12 8 35% 57% 77% 91% 60% 52% limited high
Fiji 7 3 71% 71% 73% 81% 30% 32% high high
Malawi 10 7 43% 67% 65% 89% 51% 49% limited limited

comparability modeled 
drought hazards

hit rate regist. 
droughts

hit rate non-
regist. droughts

drought years
false alarm mode-       

led droughts

SPI3 SPI12 SPI3 SPI12 SPEI3 SPEI12 SPI3 SPI12 SPEI3 SPEI12 SSF1 SPI3 SPI12 SPEI3 SPEI12 SSFI
Afghanistan (+) + (+) + + + + + + + + (-)
Colombia (+) (+) + + + + + + + + +
Ethiopia (+) (++) (+) (+) (+) (+) (+) (+) + (+)
Fiji + + (-) + + (-) + + (-) + + (-) + + (-) + (-) + (-) + + (-) + (-)
Malawi (+) (+) (+) + + (+) (+) + + (+) (+) (+) + + +

IRI data 
library

Global 
drought 
monitor

PCRGlobWB WaterGap
Global 
Land 

Surface
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best model exists across all case study countries or even within each case study country. 
Selection of the model used depends very much on the particular region and the specific 
purpose of use, e.g. for drought monitoring and detection (here variability is the most 
important factor) or water resources management (here the absolute biases in discharge 
estimates are the most important factor). 
 
Overall, the global models are relatively better in representing the correlation coefficient (i.e. 
having the relative variability right) rather than estimating the absolute values correctly. 
Having such knowledge at hand, the global models can be safely applied in drought event 
detection and monitoring but should be handled with care when applying them for water 
resources management purposes. This is especially true for the PCR-GLOBWB, which 
generally overestimates water resources availability across all case studies investigated. 
This, in turn, results in an underestimation of water resources scarcity conditions. When using 
global models for water resources management purposes, absolute estimates need to be 
bias corrected towards local observations. Long-term mean water resources availability of 
WaterGAP have been calibrated/validated towards long-term mean discharge estimates. 
Therefore, WaterGAP is performing relatively better when looking at the absolute biases. 
 
In this report we used open-source discharge observations to validate the global models with. 
Since the time-length of these discharge observations is usually too short we have not 
performed a validation on droughts. This would require 30 years of data availability in both 
observations and models. Instead, we evaluated the correlation coefficient and bias ratio of 
discharge estimates. Together these indicators give, nevertheless, a good insight into the 
ability of the models to represent the variability and absolute estimates. Future research could 
look into other data-sources to allow for a validation of other drought indicators as well, for 
example datasets that are able to represent historical potential evapotranspiration. 

8.3.3 ENSO analysis 
For most case study countries we find significant differences in drought frequency and 
exposure between El Niño (EN)/La Niña (LN) phases, and neutral or non-EN/-LN phases 
correlation. Despite the significant anomalies in drought frequency and exposure, we do not 
always find a strong correlation between the continuous drought indicator values and the JMA 
SST index. In the case of Colombia we found high correlations and relatively short optimal lag 
times. Correlations for Fiji and Afghanistan were moderate while low correlations were found 
for Ethiopia and Malawi. High correlation results indicate that a relatively large part of the 
variability in drought conditions can be associated to ENSO variability, more specifically to 
ENSO variability represented by the JMA SST index, Low correlation results indicate that the 
identified variability in drought conditions cannot be explained merely by variations in the JMA 
SST; here drought variability is the result of a composite of actors. This is the case for 
example for Ethiopia and Malawi. 
 
Whereas the country-scale anomalies are shown to be consistent across the two models 
investigated when looking at the meteorological drought indicators (SPI, SPEI), the results 
differ in most case studies for the SSFI indicator. This can be explained by the differences in 
routing routines and calibration between the two models and the level of variability 
incorporated within the two models. Looking at the spatially explicit anomalies in exposure 
and the spatial patterns of correlation we do see, however, that for most case studies 
investigated that both models show a similar spatial pattern and that the choice of model does 
not significantly affect the outcomes. 
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In this assessment we only coupled the exposure to drought with the ENSO signal. However, 
ENSO is part of an ocean–atmospheric climate variability system that constitutes many more 
subregional systems and local circulation patterns (e.g., Indian monsoon, Pacific/North 
America pattern, North Atlantic Oscillation, East Atlantic/West Russia pattern, Scandinavia 
pattern), which modulate the ENSO signal (Hannaford et al., 2011). Future research should 
therefore look into the sensitivity of drought exposure to combinations of these systems, 
especially in areas that provide a relative low ENSO signal. In addition, a more detailed 
analysis into the influence of large-scale oscillation patterns on the regional exposure of 
droughts, focusing more specifically on the different time/space intervals for different parts of 
the case study countries would provide more insight into the local to regional sensitivity of the 
case study countries to ENSO driven variability. 

8.4 Assessment of drought impact and risk platforms and datasets 
Five available online platforms and datasets were assessed for their capacity to provide 
spatial drought impact and/or risk information:  
• Global map of drought risk (JRC) 
• IWMI water data portal 
• Aqueduct Water Risk Atlas 
• FAO Agricultural Stress Index and precipitation anomalies 
• African Drought Observatory 

The online platforms and datasets providing impact and risk information based on historical 
data were compared with information from the country descriptions and, where possible, with 
each other. A general weakness of the analysis is the lack of adequate impact data, impeding 
a more sophisticated quantitative approach. Also, drought impact and risk could not be 
assessed for each sector, because of a lack of global drought modeling tools or other 
resources for specific sectors. Hence, the analysis resulted in a bias towards drought impact 
and risk to the population, the agricultural sector and the overall economy. Below, a 
description of the pros and cons of each of the impact/risk platforms and datasets is provided 
based on our qualitative analyses. 
 
• The advantage of the global map of drought risk from JRC is that the relative share of 

hazard, exposure, and vulnerability in the final maps of impact and risk is clear. The 
impact estimates seem logical compared to country information available, however, the 
findings cannot be verified at the level of spatial detail provided due to a lack of local 
impact information. A disadvantage is that the impact and risk for the various sectors 
are not specified per sector. In addition, the estimated drought hazard does not always 
seem to be in line with country information on droughts and the drought analysis based 
on the global models in the report. 
 

• The advantage of the maps provided by the IMWI water data portal is that they provide 
impact information at a relatively high spatial detail. The impact estimates seem logical 
compared to country information available for most countries; however, verification at 
the level of spatial detail provided is not possible due to a lack of local impact 
information. A disadvantage is that the impact information is not readily available for 
many sectors, if at all. 
 

• The advantage of the Aqueduct Water Risk Atlas is that it relates baseline water stress 
to the important sectors (agriculture, hydropower, mining, food & beverage, chemicals, 
semi-conductor, oil and gas, mining, construction materials, textiles). Unfortunately, 
there does not seem to be (any) variation for the different sectors; all maps appear to be 
the same or very similar to the default baseline water stress map. In addition, the water 
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stress information is not always in line with country information or with the other 
impact/risk models. 

 
• The advantage of the FAO platform with agricultural stress indices is the high resolution 

and the spatial time scale of years, enabling a detailed assessment of historical 
agricultural droughts. However, verification at the level of spatial detail provided is not 
possible due to a lack of local impact information. A comparison at the country scale 
shows that the information at the FAO platform is often in line with registered 
(agricultural) droughts, but in many cases agricultural impact is missed (e.g., Fiji case). 

 
• The maps from the African Drought Observatory could only be evaluated for two case 

study countries (Ethiopia and Malawi). The advantage of these maps is that they 
provide information at the sub-basin level. However, the accuracy of the drought 
vulnerability patterns provided requires further detailed analysis with additional 
information that was currently not available. Another disadvantage is that no 
specifications per impact category / sector are provided. 

 
An important general observation during this project was the unavailability of data about 
drought related impacts for relevant impact categories on a sub-national scale. As a result, 
actual validation of the maps from the online platforms and datasets was not possible. For 
Malawi, an analysis of national and sub-national agricultural data could be made available 
based on information from FEWS NET. However, also in the case of Malawi, drought impact 
data on hydro-power and data on other relevant impact categories were not available. It is 
advised that a separate investigation is started to develop a methodology for collection of 
sub-national drought impacts in the main sectors and that effort is put into building a database 
for such data (historic impacts as well as exposure and vulnerability information). In a follow-
up of this study the efforts of the Sendai Framework for Disaster Risk Reduction (2015-2030), 
such as the Disaster Information Management System53, could also be included. 
 
Another general observation is the diversity of approaches, underlying data and spatial scales 
that are used to create and present impact and risk in the maps available at online platforms 
and datasets. This diversity makes it virtually impossible to carry out a meaningful 
comparison. It is recommended that more uniformity in drought impact and risk indices and 
visualisation is promoted in order to increase comparability of products. Moreover, this will 
probably increase the level of understanding and utilization of the drought impact and risk 
information. 
 
Finally, it is recommended that information about actual drought impacts is added to the 
(existing) online portals and databases. By doing this the quality and relevance of the impact 
and risk maps (which are often a product of map layers of hazard, exposure and vulnerability) 
can be demonstrated, thereby increasing their reliability and use. It is however very well 
possible that such data is not available and collection of impact information is required first. 

8.5 Qualitative assessment of forecasting and monitoring products 
For the five focus countries we provide a qualitative analysis of the existing drought 
monitoring and forecasting systems. The key conclusions of the analysis are as follows: 

 
• Of the five countries analysed, drought monitoring and forecasting systems are most 

limited in Afghanistan. Thus far the only source of monitoring and forecasting products 

                                                   
53 https://www.desinventar.net/DesInventar/ 
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in Afghanistan is through FEWS NET. Our review identifies that although drought 
related literature is limited for Afghanistan, results of the existing studies are promising 
for developing a drought monitoring/forecasting system, as they indicate some potential 
predictability. 
 

• From the five countries analysed we found that the drought monitoring and forecasting 
systems are most mature in Ethiopia, which has multiple systems in place through 
national agencies such as National Meteorology Agency (NMA), regional agencies such 
as IGAD-ICPAC (Inter-Governmental Authority on Development Climate Prediction and 
Applications Centre) and International agencies such as FEWS NET and IRI. 
 

• Likewise, the Instituto de Estudios Ambientales y Meteorlogía (IDEAM) and SADAC are 
responsible for providing drought monitoring and forecasting information in Columbia 
and Malawi, respectively. 
 

• In general, most of the national and regional monitoring systems in the case study 
countries rely on FEWS data products among other products, and forecasting systems 
combine consensus forecasts (based on local experts assessments and statistics e.g., 
the GHACOF process for Ethiopia) with forecasts from global dynamical forecasts such 
as NMME and ECMWF. 

 
• Despite several global scale drought monitoring and forecasting systems  exist, it is 

found that these systems  are most mature in the countries where there are one or more 
national or regional agencies tasked with providing monitoring and forecasting 
information and where there are national or regionally focused versions of the global 
datasets. 

 
Based on this assessment, the following recommendations are provided for starting up or 
improving drought detection/early warning and forecasting systems: 

 
• Appoint one or, preferably, several national and regional agencies with providing 

monitoring and forecasting information to authorities and the public. A strong national or 
regional agency mandated to provide operational drought monitoring and early warning 
products, is key. Countries can improve their system or set-up a forecasting and early 
warning system by committing resources towards the implementation of a 
national/regional climate service agency. In addition, international agencies should work 
towards supporting such agencies and capacity building efforts. 
 

• It is important that governments commit to multi-year collaboration so that the 
operational demonstration of monitoring and forecasting products has been realized and 
make sure that local agencies have the skill and infrastructure they need to keep the 
system operationally sustainable. 
 

• In case there is a lack of understanding of the climate and drought sensitivity and 
exposure to different sectors, it is important that research is conducted to assess the 
drought characteristics and the level of drought predictability for a given country or 
region. 
 

• Global systems are extremely valuable as they provide first cut monitoring and early 
warning product for the national and regional agencies, without them spending their 
computational resources. They can work with the global systems-based products and 
revise/refine based on their local products and expertise. Consensus forecasts could be 
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combined with a national or regionally focused version of the global dynamical forecast 
datasets. A global system also makes sense as drought events are often linked to 
global and/or regional phenomenon that may be beyond the borders of the case study 
country. Here it is important that local/regional agencies have knowledge as well as 
easy and smooth access to global products. 

 
• Monitoring and forecasting products should be developed in close collaboration with the 

local/regional agencies. The agencies should be provided with the right tools, skills and 
datasets needed so they can best utilize their local expertise on monitoring and early 
warning. Assistance from (foreign) experts could be requested to set up and/or improve 
drought detection and forecasting systems. 
 

• Importantly, drought detection and monitoring systems should connect closely to the 
questions and needs of local/regional agencies and other stakeholders. In doing so, 
data and derivative products from such a system can be packaged into usable impact 
information. 
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Appendix A – Country scale analysis of Global Models 

A1. Figures Afghanistan 
 

 

 

Figure A1.1 – Meteorological drought index SPI1 based on IRI data library (top), based on PCR-GLOBWB 
(middle), and based on WaterGAP (bottom) for Afghanistan. Grey stars indicate drought events recorded by 
EM-DAT and other sources (Deltares, 2016). 
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Figure A1.2 – Meteorological drought index SPI3 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Afghanistan. Grey 
stars indicate drought events recorded by EM-DAT and other sources (Deltares, 2016). 
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Figure A1.3 – Meteorological drought index SPI12 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Afghanistan. Grey 
stars indicate drought events recorded by EM-DAT and other sources (Deltares, 2016). 
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Figure A1.4 – Meteorological drought index SPEI1 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Afghanistan. Grey stars indicate drought events 
recorded by EM-DAT and other sources (Deltares, 2016). 
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Figure A1.5 – Meteorological drought index SPEI3 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Afghanistan. Grey stars indicate drought events 
recorded by EM-DAT and other sources (Deltares, 2016). 
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Figure A1.6 – Meteorological drought index SPEI12 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Afghanistan.  Grey stars indicate drought events 
recorded by EM-DAT and other sources (Deltares, 2016). 
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Figure A1.7 – Hydrological drought index SSFI-1 based on based on PCR-GLOBWB (top) and based on 
WaterGAP (bottom) for Afghanistan. Grey stars indicate drought events recorded by EM-DAT and other 
sources (Deltares, 2016). 
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A2. Figures Colombia 
 

 

 

 
Figure A2.1 – Meteorological drought index SPI1 based on IRI data library (top), based on PCR-GLOBWB 
(middle), and based on WaterGAP (bottom) for Colombia. Grey dots indicate  drought events recorded by 
IDEAM; Grey triangles indicate drought events recorded by EM-DAT and IDEAM. 
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Figure A2.2 – Meteorological drought index SPI3 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Colombia. Grey dots 
indicate  drought events recorded by IDEAM; Grey triangles indicate drought events recorded by EM-DAT 
and IDEAM. 
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Figure A2.3 – Meteorological drought index SPI12 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Colombia. Grey dots 
indicate  drought events recorded by IDEAM; Grey triangles indicate drought events recorded by EM-DAT 
and IDEAM. 
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Figure A2.4 – Meteorological drought index SPEI1 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Colombia. Grey dots indicate  drought events 
recorded by IDEAM; Grey triangles indicate drought events recorded by EM-DAT and IDEAM. 
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Figure A2.5 – Meteorological drought index SPEI3 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Colombia. Grey dots indicate  drought events 
recorded by IDEAM; Grey triangles indicate drought events recorded by EM-DAT and IDEAM. 
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Figure A2.6 – Meteorological drought index SPEI12 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Colombia.  Grey dots indicate  drought events 
recorded by IDEAM; Grey triangles indicate drought events recorded by EM-DAT and IDEAM. 
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Figure A2.7 – Hydrological drought index SSFI-1 based on based on PCR-GLOBWB (top) and based on 
WaterGAP (bottom) for Colombia. Grey dots indicate  drought events recorded by IDEAM; Grey triangles 
indicate drought events recorded by EM-DAT and IDEAM. 
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A3. Figures Ethiopia 
 

 

 
Figure A3.1 – Meteorological drought index SPI1 based on IRI data library (top), based on PCR-GLOBWB 
(middle), and based on WaterGAP (bottom) for Ethiopia. Grey stars indicate drought events recorded by EM-
DAT. 
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Figure A3.2 – Meteorological drought index SPI3 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Ethiopia. Grey stars 
indicate drought events recorded by EM-DAT. 
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Figure A3.3 – Meteorological drought index SPI12 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Ethiopia. Grey stars 
indicate drought events recorded by EM-DAT. 
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Figure A3.4 – Meteorological drought index SPEI1 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Ethiopia. Grey stars indicate drought events 
recorded by EM-DAT. 
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Figure 3.5 – Meteorological drought index SPEI3 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Ethiopia. Grey stars indicate drought events 
recorded by EM-DAT. 
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Figure A3.6 – Meteorological drought index SPEI12 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Ethiopia.  Grey stars indicate drought events 
recorded by EM-DAT. 
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Figure A3.7 – Hydrological drought index SSFI-1 based on based on PCR-GLOBWB (top) and based on 
WaterGAP (bottom) for Ethiopia. Grey stars indicate drought events recorded by EM-DAT. 
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A4. Figures Fiji 
 

 

 

 
Figure A4.1 – Meteorological drought index SPI1 based on IRI data library (top), based on PCR-GLOBWB 
(middle), and based on WaterGAP (bottom) for Fiji. Grey dots indicate  drought events recorded by Fiji 
meteorological service; Grey triangles indicate drought events recorded by EM-DAT and Fiji meteorological 
service. 
  



 

 

 
 
 
 
 

 
Comparative Assessment of Drought Hazard and Risk Modeling Tools 

 

11200758-002-ZWS-0003, Version 0.2, November 12, 2018, final 
 

150 of 1621? 
 

 

 

 

 
Figure A4.2 – Meteorological drought index SPI3 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Fiji. Grey dots 
indicate  drought events recorded by Fiji meteorological service; Grey triangles indicate drought events 
recorded by EM-DAT and Fiji meteorological service. 
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Figure A4.3 – Meteorological drought index SPI12 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Fiji. Grey dots 
indicate  drought events recorded by Fiji meteorological service; Grey triangles indicate drought events 
recorded by EM-DAT and Fiji meteorological service. 
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Figure A4.4 – Meteorological drought index SPEI1 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Fiji. Grey dots indicate  drought events recorded by 
Fiji meteorological service; Grey triangles indicate drought events recorded by EM-DAT and Fiji 
meteorological service. 
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Figure A4.5 – Meteorological drought index SPEI3 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Fiji. Grey dots indicate  drought events recorded by 
Fiji meteorological service; Grey triangles indicate drought events recorded by EM-DAT and Fiji 
meteorological service. 
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Figure A4.6 – Meteorological drought index SPEI12 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Fiji.  Grey dots indicate  drought events recorded 
by Fiji meteorological service; Grey triangles indicate drought events recorded by EM-DAT and Fiji 
meteorological service. 
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Figure A4.7 – Hydrological drought index SSFI-1 based on based on PCR-GLOBWB (top) and based on 
WaterGAP (bottom) for Fiji. Grey dots indicate  drought events recorded by Fiji meteorological service; Grey 
triangles indicate drought events recorded by EM-DAT and Fiji meteorological service. 
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A5. Figures Malawi 
 

 

 

 
Figure A5.1 – Meteorological drought index SPI1 based on IRI data library (top), based on PCR-GLOBWB 
(middle), and based on WaterGAP (bottom) for Malawi. Grey stars indicate drought events recorded by EM-
DAT; Grey dots indicate  drought events recorded by RMSI; Grey triangles indicate drought events recorded 
by EM-DAT and RMSI. 
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Figure A5.2 – Meteorological drought index SPI3 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Malawi. Grey stars 
indicate drought events recorded by EM-DAT; Grey dots indicate  drought events recorded by RMSI; Grey 
triangles indicate drought events recorded by EM-DAT and RMSI. 
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Figure A5.3 – Meteorological drought index SPI12 based on Global Land Surface (top), based on IRI data 
library (second), based on PCR-GLOBWB (third), and based on WaterGAP (bottom) for Malawi. Grey stars 
indicate drought events recorded by EM-DAT; Grey dots indicate  drought events recorded by RMSI; Grey 
triangles indicate drought events recorded by EM-DAT and RMSI. 
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Figure A5.4 – Meteorological drought index SPEI1 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Malawi. Grey stars indicate drought events 
recorded by EM-DAT; Grey dots indicate  drought events recorded by RMSI; Grey triangles indicate drought 
events recorded by EM-DAT and RMSI. 
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Figure A5.5 – Meteorological drought index SPEI3 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Malawi. Grey stars indicate drought events 
recorded by EM-DAT; Grey dots indicate  drought events recorded by RMSI; Grey triangles indicate drought 
events recorded by EM-DAT and RMSI. 
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Figure A5.6 – Meteorological drought index SPEI12 based on Global Drought Monitor (top), based on PCR-
GLOBWB (middle), and based on WaterGAP (bottom) for Malawi.  Grey stars indicate drought events 
recorded by EM-DAT; Grey dots indicate  drought events recorded by RMSI; Grey triangles indicate drought 
events recorded by EM-DAT and RMSI. 
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Figure A5.7 – Hydrological drought index SSFI-1 based on based on PCR-GLOBWB (top) and based on 
WaterGAP (bottom) for Malawi. Grey stars indicate drought events recorded by EM-DAT; Grey dots indicate  
drought events recorded by RMSI; Grey triangles indicate drought events recorded by EM-DAT and RMSI. 
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