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Summary 

Rain and floods can cause large damages to railways, causing hazards to its trains and 

travelers. To improve flood mitigation, the French Railways (SNCF-Réseau) would like to use 

short-term forecasts to predict when a precipitation-induced incident would occur on the railway 

network. This study explored whether precipitation-induced incidents on the SNCF network 

between 2018-2022 can be predicted in advance. Precipitation accumulations from a gridded 

reanalysis dataset were matched with a log of incidents recorded by SNCF-Réseau. Local 

accumulation thresholds of a 10-year or 100-year event were tested to predict incidents. 24- 

and 72-hr precipitation accumulations were found to be weak – but not insignificant – predictors 

of the incidents provided (HSS<0.16). Filtering results based on antecedent moisture, using 

SPI-1, did little to improve results.  

 

Two case studies were then conducted to explore the cause of incidents, given various 

preceding rainfall amounts. In the Villaine case study, incidents occurred despite normal 

precipitation accumulations and antecedent moisture (SPI<1). Photos of incidents indicate that 

they have likely been caused by short, localised precipitation events, some of which may not 

have registered in the precipitation data used. In the Roya case, all incidents were registered 

after one extreme precipitation event. This event was registered, but underestimated, by 

precipitation data. However, a hindcasting exercise  - looking at past precipitation forecasts 

leading up to the event - showed that this event could have been forecasted with a lead time 

between 5 hours and 4 days, depending on the probability threshold used.  

 

Results indicate that many of the incidents were triggered by very intense and localised 

precipitation events. These events were underestimated, or not captured, by the precipitation 

products we used.  Further studies would also benefit from more contextual insights on past 

incidents, in order to better categorise each incident according to their causation pathway and 

hydro-meteorological predictors. To this end, we been recommend to explore predictors of past 

incidents and use high-resolution precipitation observations and nowcasts. While the former 

aspect relates to the entire SNCF network, analyses using high-resolution observations and 

forecasts should be tested to predicted incidents in small, steep catchments facing intense 

localised precipitation events. Also, recommendations have been made in further developing 

the risk management protocol to better gain insights on the hydro-meteorological context of 

each incident.  Though results show a more nuanced approach is necessary to predict incidents 

across the SNCF network, recommendations have been made to set further research on the 

right track. 
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1 Introduction 

Floods can wreak havoc on railways. As railways require complex and rigid infrastructure, their 

vulnerability to flooding is especially high (Doll et al., 2014; Thieken et al., 2016). Pluvial and 

fluvial flood events can, for instance, erode and inundate railway infrastructure (Ochsner et al., 

2023). Another notable mechanism is scouring in rivers and streams, which can affect the 

structural integrity of both railway bridges and earthworks (Dikanski et al., 2018). Such 

incidents can lead to train services being delayed or cancelled, along with making costly 

maintenance and mitigation efforts a necessity (Cheetham et al., 2016). Demand for more 

resilient railways is on the rise. Train travel is being promoted for its relatively low greenhouse 

emissions (Bruckner et al., 2014) while their flood risks are escalating due to climate change 

(Bubeck et al., 2019). To cope, railway operators are increasingly required to better understand 

flood risk and provide mitigation measures to ensure improved resilience of their infrastructure 

(Ochsner et al., 2023).  

 

The risk management process consists of the identification, assessment and treatment of risks 

(ISO 31000, see Hutchins, 2018). According to these principles, precipitation-induced flood 

risks are first identified and catalogued. Then, during risk assessment, stretches of railway are 

assessed for risk and vulnerability to floods using past data or future scenarios. Much of the 

literature is focused on this stage (Ochsner et al., 2023); studies often involve drawing up flood 

risk maps to identify vulnerable stretches of track where flood mitigation strategies could be 

directed (Bubeck et al., 2019; Petrova, 2020). However, few studies discuss flood risk 

management at an operational level, such as flood forecasting and monitoring (Ochsner et al., 

2023). Potentially, flood forecasts can warn railway operators of possible flood events, giving 

operators time to carry out railway inspections, maintenance, or closures to mitigate damage 

and disruption (Kerin, 2020).        

 

Risk is composed of hazard, exposure and vulnerability (UNISDR, 2016). Figure 1 illustrates 

that the presence of a hazard alone does not guarantee an incident. Railway infrastructure 

must also be exposed to the hazard and be vulnerable to it, resulting in damages. Incident 

occurrence is a result of a combination of these factors, occurring in a chain of events called a 

causation pathway.  Understanding causal pathways and identifying relevant exposure and 

vulnerability variables is essential in linking precipitation with incidents. 

 

 
Figure 1 - Components of risk, as defined by UN International Strategy for Risk Reduction (UNISDR). Adapted 

from figure by Bles et al. (2023). Framework is analogous to RISK-VIP, as developed by Cheetham et al. (2016) 
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The French national railways (Société Nationale des Chemins de fer Français – SNCF), 

through its SNCF-Réseau company, manages France’s railway network. The network records 

multiple precipitation-induced incidents each year (SNCF Réseau, 2023, 2024). The network 

incurred flood damages averaging €100million/year between 1976-2005 (second in Europe to 

Germany), which are expected to rise to €400million/year between 2006-2100 (Bubeck et al., 

2019). SNCF have implemented Toutatis, a system that monitors real-time precipitation 

observations from a nationwide radar network. Warnings are sent when high accumulations 

are observed. Preliminary results are encouraging – an event was confirmed on 2 of 3 

instances where a warning was sent. SNCF-Réseau is considering the implementation of a 

system that can forecast precipitation-induced railway incidents. Such a system might improve 

their mitigation strategy through increasing the forecast reliability and extending the forecast 

lead time beyond that of Toutatis (5 minutes).  

 

Delft-FEWS, developed by Deltares (Werner et al., 2013), has been considered as a possible 

system to forecast precipitation-induced railway incidents. Delft-FEWS, used operationally by 

forecasters worldwide, is able to run various hydrological models simultaneously using real-

time data (Gijsbers et al., 2008). Despite its popularity at catchment, regional and national 

levels, integrating flood forecasting systems into transport infrastructure management is still in 

its infancy. Literature is limited to Kerin (2020), who incorporated Delft-FEWS into a 

management system of railway bridges in the Brandon catchment in Ireland. The system could 

forecast water levels and scour at the bridges, informing infrastructure managers on when to 

plan bridge maintenance, inspections, or even closures. Hypothetically, a similar system could 

be established for the SNCF railway network. However, due to the substantial investments 

involved in setting up such as system (Kerin, 2020), studying how past incidents on the railway 

network could be predicted in advance becomes are prudent step in justifying these 

investments.  

 

To that end, this internship project explored the extent to which precipitation-induced incidents 

on the SNCF railway network can be predicted in advance. In the scope of this project, 

“precipitation-induced incidents” are ncidents triggered by precipitation or its induced runoff or 

streamflow, which can impact the structural integrity of the railway infrastructure. This study 

only considered past incidents impacting the railway earthworks that are hypothesised to have 

been caused by accumulated precipitation and resulting runoff processes in localised 

catchments (Cheetham, 2024).  
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2 Research Design 

We first studied precipitation induced incidents across the entire SNCF network. When studying 

all incidents, we correlated incident occurrence with accumulated precipitation preceding the 

day of each event. Then, to study the relationship between precipitation and incidents on a 

local scale, two case studies were conducted. The datasets used in this study are summarised 

in table 4.  

 

The study spanned the entire SNCF railway network, consisting of 35,115km of track across 

metropolitan France (figure 2). The incident log provided by SNCF includes 402 incidents that 

occurred between 2018 and 2022 and which were believed to be precipitation-induced. An 

incident is logged whenever abnormalities on the track are observed which may hinder the 

structural integrity of the track or underlying earthworks (table 1). These were categorized as 

either flooding, erosion or mudslide. This incident log was recorded by local railway workers, 

who record the location (line number and distance along track, i.e. chainage), time (day of 

recording) of each incident, as well as categorising the incident by type. Classification of 

flooding incidents is the responsibility of each local infrastructure maintenance team, meaning 

different types can be recorded for similar events, depending on experience. Also, when 

multiple incidents are observed close to each other (typically after a heavy storm) only some 

of the more serious incidents are logged. Due the sensitive nature of the log, only a selection 

of the incident database could be shared for this study. 

 

Table 1 - Excerpt of incident log provided by SNCF. Incident location coordinates were obtained by 

georeferencing by line number and chainage. 

Line Chainage (m) Date Obs Type X (WGS-84) Y (WGS-84) 

946000 81230 3-10-2020 EROSION 7.59030 44.10061 

944000 6310 2-12-2019 MUDSLIDE 6.97147 43.56310 

935000 852784 21-11-2018 FLOODING 5.15756 43.33850 
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2.1 All Incidents 

 
Figure 2 – Precipitation induced incidents logged between 2018-2022 on the SNCF railway network. The case 

study areas Villaine (circled) and Roya (entire catchment, in yellow) are highlighted. 

 

 

Initially we ascertained the correlation between antecedent precipitation and incident 

occurrence. Daily accumulated precipitation observations were obtained from the EMO-1 

reanalysis dataset (Gomes et al., 2020). This gridded dataset contains precipitation 

accumulations at a very high spatial resolution (1arcmin, roughly 1.8km, in both directions) 

necessary to capture extremely localised precipitation events (Thiemig et al., 2022). Such 

events could hypothetically lead to runoff processes on and near a certain stretch of track, 

leading to damages. Incidents were only logged by day of observation without noting the time 

at which an incident occurred. Hence, the shortest relevant time interval to accumulate 

precipitation is 24 hours preceding the incident date. The pr24 precipitation variable was used, 

which comprises precipitation accumulated over 24 hours preceding 06:00am on the day after 

the incident. The precipitation grid was superimposed over the georeferenced incidents, 

yielding 314 grid cells (of 1x1 arcmin) where at least one incident was observed. Further 

analysis was limited to data from these 314 grid cells, which are termed ‘incident locations’. 

This step saves on computation time, though ignores false alarms and misses that occur 

elsewhere in the railway network.      

 

24- and 72-hour precipitation accumulations at each incident location were compared with 

those of local 10-year or 100-year events. These accumulation thresholds were available for 

all of France at 3km resolution from the SHYREG dataset (Arnaud et al., 2016). These amounts 

act as a threshold for precipitation severity, and hence used to predict incident occurrence. An 

incident is considered to have been predicted when if the preceding precipitation accumulation 

exceeded the threshold on a certain day. Differences between the precipitations during 

incidents and during all days can be compared statistically using the Kolmogorov-Smirnov (KS) 

2-sample test (Kolmogorov, 1933; Smirnov, 1948). This test is widely used in comparing 

precipitation data, as comparisons are made on the empirical cumulative distribution functions 

without requiring the assumption of normality (Vlček & Huth, 2009).  
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As with the choice of precipitation data, precipitation accumulation thresholds of shorter 

durations were not used since the timing of the incidents are not known. For this analysis, 

observation data was preferred over forecast data, as the initial aim was to identify the 

statistical relationship between precipitation and incident occurrence, without having to 

consider forecast uncertainties.  

  

The performances of local precipitation thresholds in predicting incidents were quantified in 

contingency tables (table 2). First, daily timeseries of precipitation accumulations spanning 

2018-2022 were generated for each incident location. Each day was then categorised in a 2x2 

contingency table based on whether an incident was reported, and whether the accumulated 

precipitation exceeded a local threshold (i.e. whether the incident was predicted). The resulting 

table consists of 4 categories, as seen in table 2. Various forecasting metrics were 

subsequently derived from each contingency table. The hit rate (equation 1) and false alarm 

rate (equation 2) respectively indicate the performance of the forecast in predicting the 

incidents and in generating false positives. These metrics are popularly used to communicate 

forecast performance (Wilks, 2011), as they capture the main requirements of a reliable 

forecast (capturing incidents while minimising false alarms) in an intuitive manner. An ideal 

forecast would maximise the hit rate (= 1) while minimising the false alarm rate (= 0).  

 

𝐸𝑞 1: 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠 𝑎𝑛𝑑 𝑚𝑖𝑠𝑠𝑒𝑠
 

 

𝐸𝑞 2: 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒𝑠 𝑎𝑛𝑑 𝑞𝑢𝑖𝑒𝑡𝑠
 

 

𝐸𝑞 3: 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒𝑠
 

 

𝐸𝑞 4: 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠 𝑎𝑛𝑑 𝑞𝑢𝑖𝑒𝑡𝑠

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

Equations 1-4: Performance metrics derived from the 2x2 contingency table. 

 

Table 2 - Generalised contingency tables as used in this study. 

 
 

As the resulting contingency tables revealed predictions with low hit and false alarm rates, it 

became important to determine whether the predictor outperformed one that predicts incidents 

at random. The Heidke Skill Score (HSS) was used to compare the proportion correct (equation 

4) of the prediction with that of a random (pure noise) predictor (equation 5). A predictor scoring 

HSS=1 is a perfect predictor, while one scoring HSS<0 underperforms a random forecast. 

 

𝐸𝑞 5: 𝐻𝑆𝑆 =  
2(#ℎ𝑖𝑡𝑠 × #𝑞𝑢𝑖𝑒𝑡𝑠 −  #𝑚𝑖𝑠𝑠𝑒𝑠 × #𝑓𝑎𝑙𝑠𝑒𝑠)

(#ℎ𝑖𝑡𝑠 + #𝑚𝑖𝑠𝑠𝑒𝑠)(#𝑚𝑖𝑠𝑠𝑒𝑠 + #𝑞𝑢𝑖𝑒𝑡𝑠) + (#ℎ𝑖𝑡𝑠 + #𝑓𝑎𝑙𝑠𝑒𝑠)(#𝑓𝑎𝑙𝑠𝑒𝑠 + #𝑞𝑢𝑖𝑒𝑡𝑠)
 

Equation 5 - The Heidke Skill Score 
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The occurrence of precipitation-induced incidents could also be linked to the antecedent 

wetness conditions in local area. To test this hypothesis, the standardised precipitation index 

(SPI-1) was calculated for each location, which also acts as an indicator for flood risk (Guerreiro 

et al., 2007). SPI-1 compares the precipitation accumulated in the preceding 30 days with the 

local 40-year climatology (1981-2020) (Edwards & McKee, 1997; McKee et al., 1993). SPI-1 

hence indicates the relative antecedent precipitation levels in a normalised scale. In this study, 

SPI-1 was calculated using ERA-5 precipitation data (at 0.25O resolution) (Hersbach et al., 

2023). We distinguish days with wet conditions (SPI >1, see table 3), hypothesising that areas 

in wet conditions are more prone to flooding (Guerreiro et al., 2007; Seiler et al., 2002).     

 

Table 3 - Definitions of wetness used in this study according to SPI-1 (SPI). Wet conditions are indicated by 

SPI>1. 

Conditions Extremely 

Dry 

Very Dry Drier Normal Wetter Very Wet Extremely 

Wet 

SPI-1 
SPI < -2 -2< SPI ≤ -1.5 -1.5 <SPI ≤ 1 -1<SPI≤ 1 1<SPI≤1.5 1.5<SPI≤ 2 SPI> 2 

 

2.2 Case Study - Villaine 

 
Figure 3 - Arial 3D impression of the stretch of line 420000, encompassing the ViIlaine study area. The river 

Villaine flows alongside the railway north-westwards (blue arrow), while the catchment area upstream of the 

tracks is highlighted in orange. Source: Google Maps (48.1049, -1.3417). 

The choice of a case study location is somewhat arbitrary, but what sets the incident location 

in la Villaine (line 420000, chainage 342.430 to 342.790) apart from other locations was that 

more incidents were registered here (6) than in any other location in the network. The Villaine 

is also an SNCF priority catchment concerning fluvial floods and surface water runoff 

(Cheetham, 2024). The incident location, as well as the catchment, lies in the Western region 

of Brittainy, whose oceanic climate (Köppen-Geiger (Beck et al., 2018): Cfb) provides constant 

rainfall throughout the year. Daily precipitation accumulations were plotted for 2018-2022, 

allowing precipitation dynamics leading up to each incident date to be easily visualised. Similar 

visualisations can be made using SPI, as well as discharge data obtained from the 

measurement gauge of the Villaine at Chateaubourg. In addition, qualitative insights about the 

incidents were obtained from photos and excerpts from incident logs, which were 

communicated by Mark Cheetham (Cheetham, 2024). 
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2.3 Case Study – Roya 

 
Figure 4 - Train passing through line 946000, also known as Train des Merveilles, through the Roya valley. 

Source: lifegate.it 

 

The second case study looks into the incidents reported in the catchment La Roya following 

storm Alex in October 2nd 2020 (figure 4). The catchment lies in a valley in the region PACA 

(Provence Alpes Côte d’Azur), with a climate ranging between a drier Mediterranean climate 

in the main valley (Köppen-Geiger: Csb) and a subarctic climate (Köppen-Geiger: Dfc) at higher 

altitudes (Beck et al., 2018). Precipitation is punctuated by powerful convective systems with 

intense, localised precipitation, particularly during autumn. Following storm Alex, one such 

system, extensive damages were recorded on multiple sections of track, earthworks and 

bridges. Being able to predict and monitor precipitation events that lead to such extensive 

damages would be of great interest for multiple parties in SNCF-Réseau responsible for the 

different railway assets. As no other incidents in the catchment were recorded, we inspected 

the locations of the incidents, and using a 5m DEM, qualitatively explored the relevant 

hydrological processes. 

 

Since it was known that this precipitation event was the cause of the railway incidents, a 

hindcasting exercise was also carried out. 15-day deterministic forecasts with 6-hourly 

precipitation accumulations generated by ECMWF were retrieved from their TIGGE repository. 

The Roya catchment spans neatly within 1 grid-cell at 0.5O resolution (43.75-44.25ON and 7.25-

7.75OE). Forecasts released at 00:00CET in the 15 days leading up to the event were analysed.  

 

Hindcasting was also carried out with probabilistic forecasts. Uncertainties are inherent in 

meteorological and hydrological forecasting. These are not explicitly communicated by a 

deterministic forecast that represents the ‘best guess’ of the forecast model’s conditions, 

states, structure and forcing values (e.g. Verkade & Werner, 2011). Hence, 50-member 

ensemble forecasts were also included to explicitly represent forecast uncertainties. It is 

important to note that that this case study represents an exercise on how an incident could 

have been forecasted. The exercise does not infer forecast reliability, especially since it 

involved forecasting a known incident, ruling out any chance for a false positive.  
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Table 4 - Overview of datasets used in this study. 

Dataset Source Variable Resolution Type 

EMO-1 (Gomes et al., 2020) Accumulated 

precipitation (pr24) 

(mm/d) 

1arcmin 

(1.8x1.8km); daily 

Reanalysis 

ERA-5  

(for SPI-1) 

(Hersbach et al., 2023) Accumulated 

precipitation 

(mm/d) 

0.25deg 

(21x21km); daily 

Reanalysis 

ECMWF (ECMWF, 2024) Accumulated 

precipitation 

(mm/6h) 

0.5deg (42x42km); 

6-hourly 

Forecast (control 

and perturbed) 

SHYREG (Arnaud et al., 2016) Accumulated 

precipitation (mm/d 

& mm/3d) 

3kmx3km Return-period 

precipitation 

thresholds 

Villaine 

Discharge 

Gauge  

(EauFrance, 2024)   

Gauge ID: J706 0620 

Accumulated 

precipitation 

(mm/hr) 

Point data; daily  Observations 

Roya 

Precipitation 

Gauge 

(EauFrance, 2024)  

Gauge ID: 0616 3007 

Daily mean 

discharge (l/s) 

Point data; hourly 
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3 Results 

3.1 All Incidents 

 
Figure 5 - Histograms of 24- and 72- hour precipitation accumulations. The plots compare accumulations 

preceding days with incidents with accumulations on all days.  

 

At each incident location, the distribution of 24- and 72-hr precipitation accumulations (pr24 & 

pr72) preceding an incident were compared with distributions over the observation period 

(2018-2022). Figure 5 indicates that 72.5% of days with incidents are preceded by low (<25mm) 

24-hour precipitation accumulations. This is substantially less than the proportion of low 

accumulations over the entire observation period (97.5%). This difference is starker when 

considering 72-hr precipitation accumulations, where only 37.5% of days with incidents are 

proceeded by <25mm accumulations, compared to 95% of all days. The skewedness in both 

plots indicate that days with incidents had higher antecedent precipitation accumulations 

compared to other days. Using the Kolmogorov-Smirnov 2-sample (KS) test, the distributions 

of pr24 and pr72 at incident locations were found to be statistically different from the 

distributions on all days (p<0.01).   

 

However, higher precipitation accumulations only precede a minority of incidents. For instance, 

less than 10% of days with incidents registered more than 100mm in the preceding 72 hours. 

Though no single amount of precipitation accumulation can reliably predict incidents across all 

incident locations, there is a statistically significant relationship between precipitation at daily 

to monthly timescales (pr24, pr72, SPI-1) and incident occurrence. 
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Figure 6 - Histograms of SPI-1 in all of France, at incident locations, and at incident locations during incidents. 

The distribution of SPI-1 indices (figure 6) also reveals a tendency for incidents to occur in 

wetter conditions. Though all of France experienced on average slightly wetter weather than 

its climatology, this skewedness is more pronounced at incident locations, especially so on 

days with incidents. 37% of all days with incidents occurred during a wet period (SPI-1>1). 

Meanwhile, roughly only 20% of days at incident locations or in all of France experienced such 

wet conditions. However, t-tests run on the three distributions fail to reject the null hypothesis 

(H0: SPI-1 ≤ 0), implying that the higher SPI-1 distribution during incidents does not exceed 

climatology with statistical significance (p = 0.21).     

 

Contingency tables in figure 7 reveal that the local 10-year precipitation accumulations 

thresholds are poor predictors of incident occurrence. The best predictor of all incidents, pr72, 

only captures 14 of the 402 incidents, while generating 182 false positives. Pr24 captures fewer 

incidents (9), but also generates fewer false alarms (87). Isolating only instances when incident 

locations are in wet conditions leads to slight increases in hit rates, though coupled with 

increases in false alarms. The highest hit rate (0.125) is obtained when using pr72 to predict 

incidents during wet conditions, though this predictor also generates the highest false alarm 

rate (0.00065). Adjusting the threshold upwards (100-year events) or downwards (i.e. 

superimposing 10-year pr24 threshold on pr72 data) also lead to hit and false alarm rates 

shifting together, though never at a point where the hit rate reaches a practically useful level. 

For instance, the 10-year threshold on pr72 captures 12.5% of all incidents. However, this 

predictor generated over 4.14 times more false alarms than hits.  
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Figure 7 - Contingency tables generated when using local 10-year precipitation accumulation thresholds to 

predict incidents. 

 

In terms of HSS, most predictors outperform one that guesses incidents by chance. 5 of the 6 

predictors scored above 0, only the 24-hour threshold underperforms a forecast made by pure 

chance when predicting ‘wet’ incidents. Though the predictors are far from exhibiting a perfect 

forecast (HSS=1) their performances indicate some predictability. In terms of the skill scores, 

72-hourly precipitation accumulations are relatively stronger indicators. Additionally, incidents 

occurring in ‘wet’ conditions are relatively more predictable. 

3.2 Case study – La Villaine 

The 6 incidents covered in this case study are not consistently linked to higher levels of 

precipitation, SPI-1 nor discharge (figure 8). The 6 incidents occurred on 5 days, spread 

between 2018 and 2021. Two incidents in June 2018 occurred during high levels of 

precipitation accumulation at both 24- and 72-hour timescales. One of the incidents followed 

72 hours of precipitation that exceeded a 10-year event. This incident was the only one from 

this case study that was registered as a ‘hit’ in figure 2. Meanwhile, another peak event that 

occurred in 2021 did not coincide with an incident and was registered as a ‘false’. All other 

incidents occurred during typical precipitation accumulations at the timescales studied, while a 

day with two incidents recorded no precipitation in the preceding 72 hours.  

 

No incidents in the case study area occurred during ‘wet’ conditions. 5 of the 6 incidents 

occurred during normal wetness conditions (-1 < SPI-1 < 1), while another occurred during dry 

conditions (SPI < -1) combined with typical precipitation accumulations. Since none of the 

incidents in this case were caused by fluvial flooding, relationships between incident 

occurrence and high discharge could be attributed to a high moisture storage in the catchment 

(Kirchner, 2009). This state would likely coincide with peak discharge events, which in this case 

would include discharges above 5000l/s. 3 of the 6 incidents occurred during peak discharges. 

These results, combined with the patterns seen in SPI, imply that indicators for catchment 

moisture are also poor indicators of incident occurrence.    
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Figure 8 - Time series of 24-hour and 72-hour precipitation accumulations at the case study area in La Villaine, 

as well as of SPI-1 and discharge of La Villaine immediately downstream of the case study area.  

The incidents occurred on a raised section of track on an embankment. Photos were requested 

of the incidents in the study area. These were not found, but we received photos of incidents 

in sections of track nearby (figure 9). Both showed evidence of small-scale rainfall-runoff 

processes. The left panel shows the railway located below a road; the erosion marks suggest 

runoff from an intense rainfall event moving towards the track. The right panel also appears to 

be the result of a precipitation-triggered runoff process. Here, runoff and sediment accumulated 

next to the railway embankment. The flood marks circled indicate that the water level was 
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higher than the sediment deposited but remained below the tracks.  

Additionally, the arial photo in figure 3 shows that the area upstream of the railway consists of 

a plateau whose slopes converge towards the incident location, strengthening the case of 

surface water runoff being the culprit for these incidents. Despite the lack of correlations 

between hydro-meteorological variables and incidents, it remains likely that these incidents 

were caused by processes related to these variables.  

         

  

 
Figure 9 - Photos of incidents on a stretch of track 42000 along the Villaine, near the study area. 

 

3.3 Case study – Roya 

 
Figure 10 - Maps of the Roya catchment elevation (right) and precipitation accumulated during Storm Alex 

(EMO data) (right). 

 

According to EMO data, the Roya catchment received on average 160.1mm in 24 hours leading 

up to 06:00 on 03/10/2020 (figure 10). This amount exceeds any other precipitation event in 

2018-2022, though is shy of a 10-year event according to SHYREG data. The resulting runoff 

streamflow led to extensive damages along line 946000, classed in the incident log as 

landslides and erosion. The initial incident log received revealed 6 incidents in the area, though 

upon request for more details, 17 additional incidents were provided.  
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Figure 11 - Images of damages to line 968000 in the Roya catchment due to storm Alex. 

 

21 of the 23 incidents were recorded in the most upstream section of track (figure 10), indicating 

a correlation between smaller catchment sizes (in this case 5 - 37km2) and incident occurrence. 

Images (figure 11) and insights from experts (Cheetham, 2024) indicate that the incidents were 

generally triggered by higher flow velocities in the Roya weakening the railway embankments. 

The main ‘mechanism’ causing the incidents were hence the higher flow velocities in the Roya 

itself, as opposed to runoff coming immediately uphill from the damaged tracks. However, as 

no discharge gauge data was available, thresholds in flow dynamics leading to the incidents 

could not be obtained.  

 

Focus instead shifted to a hindcasting exercise. As we know that these incidents were caused 

by extreme precipitation amounts over 24 hours, how far in advance was this forecasted using 

ECMWF forecasts? A threshold of 120mm/day was set as a predictor of incident occurrence, 

which just exceeds the second-highest precipitation accumulation in the study period (figure 

12). The ECMWF control forecasts of the event were plotted in the 8 days leading up to it, to 

ascertain the possible forecast lead time (figures 13 and 14).  

 

The deterministic (control) forecast underforcasted the (EMO) observed precipitation, though 

the 120mm/day threshold was exceeded on the 2/10/2020 00:00 forecast (figure 10). 

Comparison with the hourly gauged precipitation data implies a forecast lead time of 5 hours 

before the start of the precipitation event, and 10 hours before the peak hourly rainfall was 

reached. Meanwhile, the probabilistic forecasts paint a more optimistic picture of forecast lead 

time. 1 out of 50 ensemble members forecasted a threshold exceedance 3-5 days preceding 

the event. This amount increases to 9 members two days before the event, and 25 members 

on 2/10/2020. As a final note, there appears to be large discrepancies between data sources 

in the precipitation observed. The rain gauge recorded nearly double (312.1mm/d) as much 

precipitation as the EMO data (160.1mm/d),  while ERA5 recorded close to 70mm/d.        
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Figure 12 - Time series of 24-hourly accumulated precipitation in the Roya, with various thresholds. 

      

 
Figure 13 - Results from the hindcasting exercise, showing the (deterministically) forecasted precipitation 

accumulations in red, and the probabilistic forecasts as boxplots. Observed precipitation in grey.  

 

 
Figure 14 - Results from the probabilistic/ensemble forecasts. Number of ensemble members exceeding 

120mm/day threshold in dark blue, labelled in red. 
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4 Discussion 

The results indicate that 24–72-hour precipitation accumulations could not be used to predict 

incident occurrences with the necessary reliability. The study on all incidents showed that the 

majority of precipitation-induced incidents were preceded by ‘typical’ precipitation 

accumulations. Meanwhile, issuing alerts when precipitation accumulations are forecast to 

exceed a 10-year (or any less extreme) event would lead to a disproportionate amount of false 

positives.  

 

However, results also point that forecasting railway incidents are far from a lost cause. The 

majority of predictors (10-year precipitation events with varying accumulation periods and SPI) 

outperformed a predictor based on pure chance, implying an (albeit weak) correlation between 

precipitation and incident occurrence. Also, the histograms of SPI and precipitation 

accumulations show that incidents tend to be preceded by wetter-than-average conditions, 

some at statistically significant levels. Lastly, the Roya hindcasting case indicated that the 

coarse ECMWF forecasts could already have forecasted the precipitation event up to 4 days 

in advance. As ECMWF also issues midday forecasts, the lead times of both probabilistic and 

deterministic forecasts could have been extended by another 12 hours. 

 

Comparisons can be made with preliminary findings from SNCF’s Toutatis project (Cheetham, 

2024). There, railway stretches in small catchments are monitored using real-time precipitation 

radar data at high spatial and temporal resolution. Thresholds were set based on local 5-minute 

precipitation accumulations at certain return periods. Track inspections were made after 

precipitation events exceeding thresholds, which were adjusted iteratively based on the extent 

of damages observed. So far, damages have been observed in roughly 2/3 of the time a 

warning was issued. This hit ratio (equation 3) is higher than any found in this study and 

indicates that incidents have a stronger correlation with precipitation events at shorter 

timescales than 24 hours. However, one should consider the risk of hit ratio being inflated by 

confirmation bias in that study. As maintenance workers were sent to inspect the track 

expecting to see damages, they may be more likely to observe and categorise abnormalities 

as incidents.       

 

During the case studies, we investigated specific incidents in more detail. Judging from 

photographic evidence, incidents tended to occur during localised runoff events caused by 

intense precipitation in small and steep catchments. However, precipitation data either 

underestimated or failed to pick up many of these events. Also, the Villaine case showed that 

not all extreme precipitation and peak discharge events lead to incidents. The next challenge 

would hence be to better define the causation pathways between the incidents and their 

physical drivers.   

 

Major limitations of these results could be linked to the incident data available. Due to legal 

limitations in this project, we received an incomplete list of incidents. The log included no 

information about the causes and severity of each incident. Incidents were only logged by their 

date of observation, which could be a day after the incident occurred. This limited us from 

exploring precipitation events at a finer timescale (i.e. hourly) where the Toutatis study 

indicated higher correlations with incident occurrence. Indeed, an hour of intense precipitation 

may be enough to trigger an incident but would not register as an abnormally high 24-hour 

precipitation accumulation. That being said, the EMO dataset accumulates 24-hour 

precipitations every 6 hours, making it possible to investigate 6-hour accumulations. Given the 

same data, further research could correlate incident occurrence with the maximum 6-hour 

accumulation that occurred at the day and location of the incident. We would expect this 
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predictor to generate more hits and fewer false alarms, as intense localised precipitation events 

are more likely to be captured at this finer temporal scale. 

 

Questions could also be raised on whether the incidents provided were all of a hydro-

meteorological cause. The categorisation of incidents may be somewhat subjective and are 

made based on the observed damages to the track infrastructure without inferring about its 

causes. For instance, if an unsafe amount of water was observed on the tracks, the incident 

would be categorised as a flood, without considering whether the source of water was from 

rain, river flooding, or from a burst water pipe. Such subjectivities in incident categorisation may 

lead to the number of misses being exaggerated, while other precipitation-induced incidents 

may not have been included in the incident log we received.  

 

Uncertainties were also evident in the precipitation data we received. Results from the Roya 

hindcasting exercise show large disagreements between different data sources. Differences 

are inherently linked to differences in how each dataset was generated (think point 

measurements versus interpolated grids). The EMO dataset tends to underestimate short and 

intense precipitation events (Thiemig et al., 2022). As results hint that such precipitation events 

are the ones most likely to trigger incidents, future studies may benefit from using higher 

resolution observations and forecasts. Opting for high-resolution data often entails the trade-

off of shorter lead times, though this issue can be negated using blended forecasts (Imhoff et 

al., 2022). These forecasts combine numerical weather predictions with radar forecasts. If 

similar precipitation data were to be used, the methodology could be refined by incorporating 

return-period estimates generated from precipitation observations from the same dataset. This 

method would ensure stronger comparability between precipitation data and the return-period 

thresholds. 

 

Further research could explore nowcasting, defined as forecasts for the next few hours, (World 

Meteorological Organization, 2017)) One example is operational nowcasts provided by 

MeteoFrance (Bouttier & Marchal, 2024). This dataset integrates radar and satellite data from 

metropolitan France as inputs for using the AROME model (lead time ≤ 6hours, with 15min 

accumulations) . This dataset benefits from having a higher spatial resolution compared to the 

EMO data used in this study (1.3km compared to 1.8km). The AROME model has been 

developed to better capture intense localised convective precipitation events, such as Storm 

Alex in the Roya case (Brousseau et al., 2016). These two characteristics indicate that the 

AROME nowcasts may perform better than the EMO data. However, preliminary findings 

indicate that AROME can reliably capture localised precipitation with return-periods of up to 

only several years (Bouttier & Marchal, 2024). Future research could utilise this (recently 

published) dataset to better understand the precipitation dynamics preceding the incidents 

used in this study.   

 

Future work should also focus on categorising the main types of precipitation-induced incidents 

that occur in the SNCF network. It is known that, even for floods, the strongest hydrological 

indicator for incident occurrence can depend on the catchment or railway infrastructure type 

(Kellermann et al., 2016). Referring to the risk framework from figure 1, this study explored 

precipitation as the main hazard, and touched upon SPI and catchment size as forms of 

exposure. We argue that intense rainfall could be the 'main' driver of incident occurrence, 

whereas the SPI and multi-day precipitation accumulations inform us about the state of the 

hydrological system and its exposure to incident occurrence. Future studies could explore other 

forms of exposure (catchment steepness and flow velocities) and vulnerabilities (e.g. time since 

last inspection) linked to railway incidents (Kellermann et al., 2015). 
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5 Conclusion 

This study explored whether precipitation-induced incidents on the SNCF network can be 

predicted in advance. , 24- and 72-hr accumulated precipitation was found to be a weak – but 

not insignificant – predictor for the incidents provided. Filtering results based on antecedent 

moisture, using SPI-1, did little to improve results. Two case studies were then made to explore 

the cause of incidents, given various preceding rainfall amounts. In the Villaine case, incidents 

occurred despite normal precipitation accumulations and antecedent moisture (SPI<1). Photos 

of incidents indicate that they could have been caused by short, localised precipitation events, 

which may not have registered in the precipitation data used. In the Roya case, all incidents 

were registered after one extreme precipitation event. This event was registered (but 

underestimated) by EMO precipitation data, while a hindcasting exercise showed that the event 

could have been forecasted with a lead time between 5 hours and 4 days, depending on the 

probability threshold used.  

 

Major limitations of the study were linked to the spatial resolution of precipitation data. The 

relatively coarse data has limited ability to capture intense, localised precipitation events. Such 

events appear to be an important predictor of precipitation-induced incidents. Further studies 

would also benefit from more contextual insights on past incidents, to better categorise the 

incident and identify their hydrological predictors. Though results show a more nuanced 

approach is necessary to predict incidents across the SNCF network, important insights have 

been found to set further research on the right track. 
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6 Recommendations 

The main results and insights gained from this study were distilled into the following 

recommendations for SNCF-Réseau (ordered in terms of importance and feasibility). Some 

recommendations (notably 4 & 5) may not follow directly from the results, but from 

conversations and other activities during the project. Lastly, it is noted that SNCF-Réseau are 

already actively focusing on many of the following recommendations; these recommendations 

are still listed here to encourage their continued progress to the benefit of predicting and 

forecasting precipitation induced incidents. 

 

1. Refine incident logging protocol: 

Formal definitions could be made for incident types. Allow for railway workers to log 

contextual information succinctly, such as the state of track, how it was damaged and 

what the source of damage was. Such insights are useful to better identify which 

(hydrological) variables are needed to predict the incident. Insights from statistical risk 

analyses and from experts could be crucial inputs to this task (see recommendations 

4 and 5). We recommend SNCF to account for this issue when devising improvements 

to their risk management protocol.  

 

2. Pursue radar-based nowcasting and forecasting products in vulnerable 

catchments: 

Results indicate that incidents occurring due to localised runoff caused by intense 

precipitation events in small, steep catchments may be those most predictable using 

precipitation data. This study recommends exploring other nowcasting and forecasting 

products (such as AROME) when monitoring these catchments and investigate their 

ability to predict and forecast incidents in these catchments.   

  

3. Expand network monitoring data to include track vulnerability: 

Results indicate that precipitation data may not be enough to reliably predict incident 

occurrence. This study agrees with ongoing efforts within SNCF-Réseau to monitor 

and collect data on the state of their railway assets. Data on railway infrastructure 

vulnerability could be analysed, coupled with more contextual insights on each incident 

(including zoomed-out photos of railway damages). These efforts can reveal trends in 

infrastructure vulnerability which can predict incident occurrence.  

 

4. Engage with those on the ground:  

We encourage SNCF-Réseau to further facilitate active engagement between their 

central office and their agents on the ground. Regional officers who regularly observe 

the state of the railway assets have an intimate understanding of their local railway 

infrastructure that may be hard to quantify. Insights from the ground can guide further 

research in identifying which variables to focus on when monitoring the hydrological 

state of the catchment, as well as the state of the railway assets themselves.  

 

5. Identify main incident predictors across SNCF network:  

Overlay incidents with other geospatial information to identify main variables that 

predict incidents. Important indicators can include topographical derivatives, soil types, 

land-use, return-period thresholds for precipitation or runoff. These variables can also 

be adapted to reflect future scenarios to anticipate changes in climate and land-use. 

Results, possibly represented as a risk map, will aid identifying important predictors for 

incident occurrence where monitoring and mitigation measures should be prioritised. 

SNCF is currently undertaking such an analysis. 
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