
Utrecht University

Mathematics for Industry

Stability and Optimisation of the
Homotopy method

Deltares

Authors
T. van den Brink,
R. Mak,
N. Strachan,
A. Tahiri,
M. Versluis,
M. Vrijhof,
K. Xiao

Supervisor
Dr. I. Kryven

Problem Poser
A. Mitchell, MSc,

Dr. B. Becker
(Deltares)

April 18, 2024

Executive Summary

The problem posed by Deltares was to study the Homotopy method applied to the Hoogheemschap
van Rijnland water system. The goal of the project was twofold.
The first aim was to decrease the runtime of the model. To this end, we introduced two methods.
The SmartSeed method uses the computation of the previous hour as a seed for the computation
of the next hour. This method allows us to skip two computation steps. When tested, the method
decreased runtimes by 60 %. The second method we introduced is a semi-linearised model. It only
solves the complete model for the first 24 hours and uses a linearisation for predictions further in
the future. We expected quite significant runtime improvements but were not able to demonstrate
this.

The second goal of the project was to investigate the theoretical foundations of current methods
with regard to stability. The current methods are based on an article by J. Baayen that deals with
slightly simpler systems than those needed at Deltares: in the article, water levels are optimized
for only one objective. Since water management often comes with several, possibly conflicting, ob-
jectives, we tried to shape the ideas of said article into the context of multi-objective optimization.
The major task here was to define the different notions of stability in the context of multi-objective
optimization and see which results from the article could still be carried over to the new setup. Most
results carry over, but finding a global optimum requires further research.

1

Contents

1 Introduction 3
1.1 General description of the current model . 3
1.2 Structure of the report . 4

2 Mathematical Description of the current methods 5
2.1 A Mathematical Description of Goal Programming 5

2.1.1 Pareto weighting . 5
2.1.2 Goal programming . 6

2.2 Homotopy method . 6
2.2.1 Barrier formulation and path stability for single objective optimization 7
2.2.2 Barrier formulation for multi-objective optimization 7
2.2.3 Order of optimisation . 8

3 Methods and Analysis 9
3.1 Analysis of Homotopy method in Multi-Objective Optimisation 9

3.1.1 Saint-Venant Equations Discretised . 9
3.1.2 Assumptions needed for the model. 10
3.1.3 Path-Stability . 11
3.1.4 Path-Connectedness . 12

3.2 Computational Methods . 12
3.2.1 SmartSeed Method . 13
3.2.2 Linearising after T = 24 . 13

4 Computational results 15
4.1 SmartSeed . 15
4.2 Linearised after T = 24 . 17
4.3 Runtime . 18

5 Discussion and Conclusion 20
5.1 Theory . 20
5.2 SmartSeed . 20
5.3 Linearising after T = 24 . 20
5.4 Runtime . 20
5.5 Conclusion . 21
5.6 Remarks . 21
5.7 Recommendations . 21
5.8 Acknowledgements . 21

2

1 Introduction

The complexity of water resource management is increasing with the effects of climate change. Good
water management ensures the sustainable development of human societies and natural ecosystems.
Water management involves variable demands, limited resources, and complex environmental fac-
tors. Reservoir operations usually require consideration of multiple objectives, such as flood control,
drinking water supply, irrigation, hydropower generation, and many more. These objectives may
conflict with each other, making harmonization difficult at times. In this context, mathematical
optimization methods offer highly valuable solutions. By applying optimization techniques, we can
build models to simulate water supply and demand. This approach can help operators make the
best decisions under complex and changing conditions, optimize the allocation and use of water
resources, reduce waste, and improve energy efficiency.

If we are only interested in water flows and volumes, the optimization problem can be expressed
as linear equations, and the solution of these equations is straightforward. Gradient optimization
methods can solve these linear optimization problems with global optimum [1]. However, if we want
to focus on the relationships between power, flow, and elevation for generating turbines, it can be
a challenge to optimize over a non-linear system. Problems can be more computationally expensive
compared to the linear part. A common solution to this problem is to transform the non-linear
equations into a linear equation, by a method called Homotopy. The problem posed by Deltares was
to investigate the Homotopy method applied to the water management of the Hoogheemraadschap
van Rijnland, which covers a system of canals in which the water levels have to be managed.

1.1 General description of the current model

The dynamics of this system of canals can be described by the Saint-Venant equations, also known
as the shallow water equations:

F =
∂Q

∂t
+

∂

∂x

Q2

A
+ gA

∂H

∂x
+ g

Q|Q|
ARC2

= 0, (1)

and the mass balance (or continuity) equation

∂Q

∂x
+

∂A

∂t
= 0, (2)

with time t and longitudinal coordinate x. These equations describe the fluid dynamics in situations
where the horizontal length scale is greater than the scale of the water depth [2]. In the equations,
the water depth is denoted by the variable H and the discharge by Q. The parameter A denotes the
cross-section, R = A/P represents the hydraulic radius, P is the wetter perimeter, C is the Chézy
friction coefficient, and g is the gravitational constant.

The optimal solutions for water level H and discharge Q should be solutions to this equation, so
the Saint-Venant equations act as a constraint in every optimization step. Since that constraint is
inherently non-linear, two main problems have to be tackled. Firstly, there is no guarantee that
the canonical optimization methods converge to a global optimum when constraints are nonlinear.
Secondly, solving the nonlinear Saint-Venant equation and dealing with nonlinear constraints is com-
putationally expensive, especially compared to the linearised system.

To circumvent those problems, Deltares introduced the so-called Homotopy method in the context
of water management. In this method, the objectives are first optimized subject to a linearisation
of the constraint posed by the Saint-Venant equation.
For the linearised model, we can find a local optimum. Next, the constraint is continuously deformed
into the original nonlinear constraint, using a linear homotopy:

G(θ) = (1− θ)F̃ + θF for θ ∈ [0, 1]. (3)

3

Note that for θ = 0, G(0) is the linearised constraint, and for θ = 1, G(1) is the original, nonlinear
constraint. The idea is to trace the optimum for the linearised constraint to that of the nonlinear
constraint, by stepwise increasing the Homotopy parameter θ from 0 to 1. At every step, the result
of the previous θ is used as seed for the next θ.

All those steps take time, and in the Homotopy method, the optimization problem is solved n = 1+∆θ
∆θ

times for every run. The advantage of this approach is that in principle we should converge to the
optimal solution. However, a large disadvantage is that the runtime of the model increases signif-
icantly. To mitigate this problem, the step size of θ in the Homotopy method is ∆θ = 0.5. Still,
Deltares finds that the runtime for the linear step, θ = 0, is approximately 2 minutes, whereas
runtimes for the nonlinear steps θ = 0.5 and θ = 1 are approximately 7 and 9 minutes, respectively1.
This adds up to a total runtime of approximately 18 minutes. Runtime introduces a gap between
measurements and prediction, and since the model is run with new measurement data every hour,
a gap of 18 minutes is significant and undesirable.

1.2 Structure of the report

In our report, we investigate the Homotopy method applied by Deltares and consider adaptations
of the method to decrease the runtime. The Homotopy method is known to derive path-stable
solutions for single-objective optimization, so we will delve into how this method can be used in
multi-objective optimization. Furthermore, we will investigate how this method can derive robust
solutions. The Homotopy path gradually introduces variability in the inlet flow and uncertainty
in the demand. By tracing this path, it is possible to find water release strategies that robustly
maintain safe levels under changing conditions, avoiding overflows and low water levels.

This report can be divided into roughly two parts. The first part is the theoretical part, which
aims to investigate the theoretical underpinnings of multi-objective optimization when combined
with the Homotopy method. In particular, we will discuss what stability means in the context of
multi-objective optimization and which concepts from the original analysis can be carried over. The
programming part explores the more practical side of multi-objective optimization. In particular,
we investigate methods on how to improve the current optimization with respect to runtime. We
developed the SmartSeed method, which uses the results of the previous run as a seed, or guess,
for the next run. The SmartSeed method allows us to skip certain steps in the Homotopy method,
reducing the runtime while not compromising on the obtained results. We also study the possibility
of linearising the last half of the time interval of the problem to try and reduce the runtime.

1Note that the difference between the latter two, θ = 0.5 and θ = 1, is most likely caused by differences in
post-processing.

4

2 Mathematical Description of the current methods

Before we can investigate the mathematical foundations of the current optimization methods used at
Deltares, we will first need a mathematical description. The current optimization methods combine
goal programming and the Homotopy method. In this section, we will describe and explain those
concepts in a mathematical context.
The Homotopy method, as it is used at Deltares, is based on the paper in [2]. The authors show that
a solution from a convex problem can be deformed to a solution of a non-convex problem so that a
global optimum is obtained, provided that the constraints are given by some discretized version of
the Saint-Venant equations. However, said paper is only concerned with optimization problems with
a single objective function. In the last part of this section, we will see how we can adapt concepts
from the original paper to the context of goal programming.

2.1 A Mathematical Description of Goal Programming

In the context of water management, we often have conflicting goals that we aim to optimize.
Sometimes these goals clearly differ in priority. For example, economic benefits should not be
prioritized over safe water level ranges. The idea behind goal programming is to solve multiple
optimization problems in order of importance whilst using the result from the previous optimization
problem for the next problem. These goals can be represented as functions fi : Rn → R, where the
i corresponds to the objective and Rn is the n-dimensional search space in which we seek solutions.
We will discuss the options of Pareto weighting and goal programming, but focus on the latter.

2.1.1 Pareto weighting

An immediate thought that would come to mind when considering multiple goals to optimize, is to
give each of the objective functions a weight according to the priority of the goal. That is, when
considering multiple objectives, we do not optimize over a single function, but instead describe each
goal separately and give each goal its own objective function. The optimization problem will take
the form

min
x∈Rn

m∑
i=1

wifi(x)

subject to ci(x) = 0, i = 1, . . . ,m1

gi(x) ≤ 0, i = 0, . . . ,m2,

where ci(x) and gi(x) denote the equality and inequality constraints known prior to optimization,
and the parameter wi ≥ 0 denotes the weight given to objective function fi.

However, choosing the weights can be somewhat arbitrary and subjective. Ideally, one would consider
all possible weightings that give all possible desirable solutions. Those desirable solutions can be
described by so-called efficient solutions. Efficient solutions are defined in such a way that no other
solution performs better on all goals; no solution strictly outperforms the efficient solution.

Definition 2.1 ([3, Efficient Solution]). A solution x that satisfies the constraint is called efficient
if there is no other point x̄ that satisfies

• the constraint,

• the strict inequality fi(x̄) < fi(x) for at least one i, and

• the inequality fi(x̄) ≤ fi(x) for all constraints.

If the constraint set is convex and the optimization function is convex, then efficient solutions can
be found by varying the parameters whilst going over W 1 := {w ∈ Rm :

∑m
i=1 wi = 1, wi ≥ 0} [3].

According to Deltares, convex relaxations of the problem do not seem to reflect reality accurately
enough, but perhaps one can use this method to find good enough approximations by a sufficiently

5

good convex relaxation.

The main problem with Pareto weighting is that it may still produce undesirable solutions. It may
still lean more into an economic benefit instead of the more important safety. To fix this, we can
optimize our goals in a specified order. This is the idea of goal programming.

2.1.2 Goal programming

Instead of trying to have one problem, we consider an ordered set of problems and state that the
solution to the ith problem may not deviate from the best solution to a previous problem. This
way, we preserve the properties from our previous solutions. Suppose that we find an approximate
solution x∗

i for the problem f∗
i := f(x∗

i) where i < j, then the next problem is defined as

min
x∈Rn

fj(x)

s.t. ci(x) = 0 (i = 1, . . . ,m1)

xi ≥ 0 (i = 1, . . . ,m)

fi(x) ≤ f∗
i (i = 1, . . . , j − 1).

The idea is that we already cover the most important goals and thus incentivize an order of impor-
tance in the optimization.

In practice, there are goals with equal priority. For these goals, a weighting is sufficient. In other
words, we only perform goal programming when the priorities of the goals differ significantly. More
precisely, each goal fi is given a priority p(i). Goals with the same priority p are then combined as

f(p) =

m∑
i=1

p(i)=p

wifi,

where wi ≥ 0. We then perform goal programming with the goals (f(p))p. This is precisely the
description of goal programming as found in the documentation of RTC-tools.

2.2 Homotopy method

The Homotopy method is a special case of parametric programming. The idea is to continuously
deform a solution of a convex relaxation of the original optimization problem to a good solution of
the non-convex program. That is, for θ ∈ [0, 1], we look at

θF̃ + (1− θ)F

where F is a relaxation of the problem and F̃ is the full non-convex problem. The notion of starting
with a convex program is captured in the notion of zero-convexity.

Definition 2.2. A parametric optimization problem is called zero-convex if the problem is convex
for θ = 0.

We slightly deviate from the original formulation where we require linear equality constraints and
a convex objective. The reason for this slight change is that the inequality constraint we add with
goal programming perfectly fits into the context of convex optimization.
The main motivation behind the Homotopy method is the implicit function theorem. In general,
suppose that we have a solution to the equation

F (x, θ) = 0.

and assume that F is sufficiently smooth. If (x∗, θ∗) is a solution of the above system, then the
implicit function theorem asserts that we are able to find a continuation in a small neighborhood of
this point as long as ∂F

∂x (x
∗, θ∗) is non-degenerate.

6

2.2.1 Barrier formulation and path stability for single objective optimization

The idea is that we do not trace the solution of the original problem immediately, but instead look
at the related barrier formulation. Let us see how this was done in the original problem and how
we may adjust this idea to the case of multiobjective optimization. Recall that we started out with
the optimization problem.

The original paper by [2] considers an optimization problem of the form:

min
x∈Rn

f(x, θ) (4)

s.t. ci(x, θ) = 0, i = 1, . . . ,m1

xi ≥ 0, i = 1, . . . ,m2.

Note that this optimization problem now relies on a parameter θ ∈ [0, 1], which represents the
homotopy change as we vary from the linear to the non-linear problem. This problem can be
translated into a so-called barrier formulation with parameter µ > 0:

min
x∈Rn

f(x, θ)− µ

m2∑
i=1

log(xi)

s.t. ci(x, θ) = 0, i = 1, . . . ,m1.

The logarithm term in this formulation ensures that the solution x is nonnegative since it tends to
infinity as x tends to zero - hence the term ‘barrier’. The important observation is that the terms
we add are convex, so if our original objective function is convex, then the new objective function
remains convex. If µ → 0, then we should get a better approximation for the non-barrier problem.
We note that the Lagrangian associated to this problem is given by:

Lµ(x, λ, θ) := f(x, θ)− µ

m2∑
i=1

log(xi) + λT c(x, θ).

The idea is to track the solution of the system

∇xLµ(x, λ, θ) = 0,

s.t. ci(x, θ) = 0, i = 1, . . . ,m1.

If (x∗, λ∗, θ∗) is a solution of the previous system, we can continue that solution in a small neighbor-
hood of (x∗, λ∗, θ∗) as long as ∂

∂(x,λ)∇xLµ(x, λ, θ) is non-degenerate. [2]. This motivates the notion

of path stability.

Definition 2.3 ([2, Path Stability]). The problem 4 is said to be path-stable if the expression
∂

∂(x,λ)∇xLµ(x, λ, θ) is non-degenerate for all points x such that c(x, θ) = 0 and xi > 0 for all
i = 1, . . . ,m1.

That is, we want to be able to trace the solution. In [2, Theorem 3.7] it is shown that if the
optimization problem is zero-convex, path-connected and path-stable, then the barrier problem has
a unique solution for each θ ∈ [0, 1] and µ > 0.

2.2.2 Barrier formulation for multi-objective optimization

We can now consider multi-objective optimization. The idea is that constraints are added of the form
fi(x) ≤ fi(x

∗
i) where x∗

i is the previously found solution. Those solutions are added as inequality
constraints just as we did with the non-negativity of the coordinates. We can then transform the
j-th problem in the optimisation into the following barrier formulation Pj,θ

µ :

7

min
x∈Rn

fj(x, θ)− µ

m2∑
i=1

log(xi)− µ

j−1∑
i=1

log(fi(x
∗
i , θ) + εi − fi(xi, θ)) (5)

s.t. ci(x, θ) = 0, i = 1, . . . ,m1,

where we allow for a deviation εi > 0 from the previous solution. The reason we allow for this
deviation is the following: if the previous problem has one unique solution, we might not be able to
minimize the other objectives. However, if we are allowed to deviate slightly from that one unique
solution, we can search more of the space to also minimize the other objectives. Secondly, this means
that the point we have previously found is still valid, and thus we may use approximation methods
starting from this point. This leads to the following definition:

Definition 2.4 (Path-Stability for Multi-Objective optimisation problems). We say that a multi-
objective optimization problem is path-stable if none of the sub-optimization problems have a de-
generate Lagrangian for all feasible points (that is, points that satisfy the constraint and are allowed
in the optimization objective).

We note that by adding barrier terms, the notion of feasible point changes. This definition might
seem a bit strange because our optimization objective changes. Eventually, though, we will get to
the final optimization problem, which is the one we continue, and that final function can be treated
as the single objective function from before. Then the analysis of the original paper can be mostly
carried over with minor adjustments.
Finally, note that the optimization objective remains convex:

Lemma 2.5 ([4, Example 3.13]). Let g be a convex function. Then the function − log(−g(x)) is
convex on the set [g < 0].

Then the term fi(x, θ)−εi−fi(x
∗
i , θ) - the argument of the last logarithm in Equation 5 - is evidently

convex if we assume that all fi are convex. This is the main motivation for going with a barrier
formulation.
Alternatively to the barrier formulation, one could consider the generalized Lagrangian. When trac-
ing the solution, however, the terms that come from the inequality constraint must satisfy very
specific conditions, such as the non-negativity of the generalized parameter for the inequality con-
straint, which we cannot guarantee from the implicit function theorem. In the barrier formulation,
we can keep the equality constraints from the original analysis, which makes this method a more
convenient one.

2.2.3 Order of optimisation

The theory behind the Homotopy method for single-objective optimization is described in [2]. We
have already explained how we aim to deal with the additional inequalities that are obtained from
goal programming. However, this does not fully determine the order in which we perform goal pro-
gramming. There are two approaches one could take. We can optimize all the goals for each θ, but
this means that the optimization function changes wildly between optimization runs and therefore
does not align with the continuation of the Homotopy.

We propose the following idea. We solve all optimization problems in order and try to continue the
solution. After we perform the Homotopy, we get a solution x∗

i at θ = 1. When we want to optimize
the i+ 1-th problem, we look at the convex problem at θ = 0 with the inequality constraints. The
problems are easier to solve, so we can exploit the convexity at θ = 0 to efficiently find a new
starting point for the next optimization whilst retaining a good solution. We note that to compare
the function values between θ = 0 and θ = 1, the optimization function cannot change with θ, but
this is of minor importance. This way, we can ensure we can study one objective function at a time
which helps with the analysis of the problem as the Lagrangian needs to deform smoothly, which is
not guaranteed if we jump from objective functions.

8

3 Methods and Analysis

The goal of this project is to decrease the runtime of the current methods. One way to achieve this
is by skipping certain steps in the optimization process. The question arises whether the method
still converges to the desired solution if those steps are skipped. Convergence might not even be
guaranteed with all steps in place. Therefore, our job is twofold: we investigate the current methods
in a mathematical framework and test a relatively simple approach to reducing the number of steps
needed.

3.1 Analysis of Homotopy method in Multi-Objective Optimisation

We would like the model to adhere to the natural laws of the world. Therefore, in this section, we
look specifically at two very important constraints when using the Homotopy method, namely the
(discretized) Saint-Venant equations. We will first describe the discretization of the Saint-Venant
equations and then discuss some properties as discussed in [2], which carry over almost verbatim.
This will give us path stability as defined in our multi-objective optimization problem. Furthermore,
we will discuss the notion of path-connectedness, which is the main problem when applying the
Homotopy method to multi-objective optimization.

3.1.1 Saint-Venant Equations Discretised

Let us first describe the discretized version of the Saint-Venant PDEs, the equality constraints that
govern the optimization problem we consider. The description will be the same as in [2].

Linear approximation of the Saint-Venant equations.
A linear approximation to the Saint-Venant equations is given by:

∂Q

∂t
+ gA

∂H

∂x
+ g

Q|Q|
A ·RC2

= 0

∂Q

∂x
+ ω

∂H

∂t
= 0,

(6)

where A is the nominal cross-section, i.e. the two-dimensional surface area in a cross-section, R is
the nominal hydraulic radius, i.e. the average ratio of surface area to wetted perimeter, the portion
of the area that is wet, and Q the average discharge, the amount of water being transported.

The linear approximation considers a rectangular cross-section with nominal width ω := (dA/dH)(H).
The needed nominal values are gathered as data and used as parameters in parts of the model con-
sidered in [2].

Discretization of the Saint-Venant equations.
The discretization makes a distinction between interior variables, i.e. variables with two neighboring
hydraulic variables, and all other hydraulic variables, referred to as boundary variables. We want to
emphasize that the variables in question are the water level H and discharge Q.

The model makes use of a staggered grid for the hydraulic equations and is semi-implicit in time.
For the implementation of the model we refer back to [2], but for the purpose of this report, these
are but details visible in the definitions of the following functions.

Introducing the Homotopy parameter θ in combination with the discretized linear and non-linear
mass balance equation, we obtain:

ci,j :=
Qi(tj)−Qi−1(tj)

∆x
+ θ

Ai(H(tj))−Ai(H(tj−1))

∆t
+ (1− θ)ω

Hi(tj)−Hi(tj−1)

∆t
= 0, (7)

9

for all i ∈ IH , the index set containing all indices of the interior Hi variables, and all j ∈ {1, . . . , T}.

Likewise, when introducing the Homotopy parameter θ in the equation containing the discretized
linear and non-linear momentum equation, we obtain the following equation:

di,j : =
Qi(tj)−Qi−1(tj)

∆t
+ θei,j + g

(
θAi+ 1

2
(tj−1 + (1− θ)A

)H(tj+1)−Hi(tj)

∆x

+ g

(
θ
Pi+ 1

2
(tj−1)) + sabs (Qi(tj−1))

Ai+ 1
2
(tj−1)2

+ (1− θ)ω
P sabs (Q)

A
2

)
Qi(tj)

C2
i

= 0,
(8)

for all i ∈ IQ, the set of indices of the interior Qi variables, j ∈ {1, . . . , T} and where Ci denotes the
local friction coefficient and the variables Ai+ 1

2
(tj) and Pi+ 1

2
(tj) are defined as:

Ai+ 1
2
(tj) :=

1

2
(Ai(Hi(tj)) +Ai+1(Hi+1(tj)));

Pi+ 1
2
(tj) :=

1

2
(Pi(Hi(tj)) + Pi+1(Hi+1(tj))).

Moreover, to avoid singular derivatives, we need the following definition:

sabs x :=
√
x2 + ε,

where ε is a small and smooth error-approximation for |x|. Lastly, the model calls for the convective
acceleration ei,j :

ei,j = sH(Qi(tj−1))
2Qi(tj−1)

Ai+ 1
2
(tj−1)

· Qi(tj−1)−Qi−1(tj−1)

∆x

+ (1− sH[Qi(tj−1)])
2Qi(tj−1)

Ai+ 1
2
(tj−1)

· Qi+1(tj−1)−Qi(tj−1)

∆x

−
Qi(tj−1)2

Ai+ 1
2
(tj−1)2

· Ai+1(Hi+1(tj−1))−Ai(Hi(tj−1))

∆x
,

(9)

with the logistic function: sH(x) := (1 + exp(−Kx))−1, and steepness factor K > 0.

We have shown this cursory explanation to be able to give some insight into the model. The
two discretized equations, ci.j and di,j , are used as primary unchanging constraints throughout the
goal-programming approach. For more in-depth information and derivation of the constraints, we
refer to [2]. [2],

3.1.2 Assumptions needed for the model.

We recreated the discretization of the Saint-Venant equations, as discussed in [2]. To ensure the
necessary properties of the model and valid results, the paper lists several assumptions, which we
will also adhere to:

OBJ The objective function f(x, θ) is twice continuously differentiable and convex to x for all
0 ≤ θ ≤ 1. In case of multi-objective optimization, we assume all objective functions satisfy
this property.

ICO The initial values for the discharge and water level at time t0 and place i, Qi(t0) and Hi(t0),
are provided for all i. We replace these values in the model so that all variables of t0 do not
appear in the optimization problem.

BND All free boundary variables have both a lower and a strictly larger upper bound. We comment
that as we add constraints, the interior hydraulic variables may be restricted. In the original
paper, it was assumed that the interior hydraulic variables are unbounded. This was only
needed for the path-connectedness argument, which we appropriately modify here.

10

HBC The water level boundary conditions Hi(tj) are fixed for all i and time tj . The boundary
conditions are replaced with the values so that the optimization problem does not contain the
water level boundary conditions.

QBC There is at least one free flow boundary condition. Any two free-flow boundary conditions
must have at least one interior flow variable situated between them.

The theorems proven in [2] often need these assumptions. We shall use those theorems from the
paper, which can be applied directly even when certain notions change.

3.1.3 Path-Stability

We have already seen that path stability only holds if the Barrier formulation is free of singularities.
The following lemma proven in [2] provides a useful characterization of path-stability. We first need
the notion of the tangent space of the constraints. This coincides with the usual definition of the
tangent space.

Definition 3.1 ([2, Definition 3.1]). We define the tangent space of the constraint set c(x, θ),
denoted by T (x, θ), as the set

T (x, θ) := {y : ⟨∇xc(x, θ), y⟩ = 0}.

Proposition 3.2. [2, Proposition 3.4] For θ ∈ [0, 1] and µ > 0 fixed, the associated barrier problem
Pi,θ
µ is path stable if and only if for each feasible point x it holds that

• ∂
∂(x,λ)∇xLi,θ

µ (x, λ, θ) =: ∇2
xxLi,θ

µ (x, λ, θ) is non-singular on the tangent space.

• The Jacobian of the constraint gradients, denoted by ∇xc(x, θ), has full rank.

For the multi-objective optimization case, we can append the extra convex function to the original
convex function of the optimization. However, the notion of a feasible point does change when
adding the convex functions.
The next part of proving path stability is to prove that the Hessian of the Lagrangian is non-
singular when we differentiate with respect to the boundary variables. This is captured in the
following proposition, which roughly has the same reasoning as in [2, Lemma 4.4]:

Proposition 3.3. Consider the Lagrangian Li,θ
µ (x, λ, θ) associated to the i-th optimisation problem.

Then the Hessian matrix ∇2
xbdyxbdy

Li,θ
µ (x, λ, θ) with respect to the boundary variables xbdy is positive

definite.

Proof. We note that the Hessian of this objective function can only change because of the extra
barrier terms added in the case of multi-objective optimization. However, as already remarked, these
barrier terms are convex. Hence, their Hessian with respect to the boundary variables is positive
semi-definite. We already showed that the Hessian of the Lagrangian without the additional terms
is positive definite under the conditions we described earlier. Therefore, their sum must remain
positive definite, as well.

From here, we can prove the non-singularity of the Hessian matrix ∇2
xxLi,θ

µ . This was already proven
in Baayen for one constraint using the previous proposition. But then this will carry over verbatim
to our problem. Thus we obtain the following proposition:

Proposition 3.4. Fix θ ∈ [0, 1] and µ > 0. Then the Hessian matrix ∇2
xxLi,θ

µ is non-singular on
the tangent space T (x, θ).

If we combine this with the characterization of path stability that relates this to Hessian matrices
and non-singularity of the constraint gradients [2, Proposition 4.1] on a larger search space, it follows
that Pi,θ

µ stays clear of bifurcations by virtue of Proposition 3.2.

11

3.1.4 Path-Connectedness

Let us now look at the path connectedness of the problem in the context of goal programming.
We have already seen that in this new context, more barrier problems are added so that the path
stability of the multi-objective optimization problems can be analyzed. When we translate to a
barrier problem, the domain of feasible points gets adjusted to the geometry induced by the objec-
tives. For example, when we perform our first optimization problem, the domain gets restricted to
both the Saint-Venant equations and the set [fi ≤ fi(x

∗
i) + εi]. The proof of path-connectedness

provided in [2] relies on the fact that the image of a path-connected set under a continuous map is
path-connected. Concretely, we have a continuous map g : xbdy → xhyd. That is, the solution of the
Saint-Venant equations is entirely determined by the boundary variables. The boundary variables
are discretized linearly, even for θ > 0. Thus, the set of allowed boundary variables is convex.

However, we can only say that [fi ≤ fi(x
∗
i) + εi] is convex. It is, in general, not true that the in-

tersection of a convex set and a path-connected set remains path-connected. One can, for example,
think of a circle and a line. They intersect in two points only and hence we may have that the
geometry of our sets gets ‘shattered’ by the convex geometry.
A bit more can be said if we take the shape of our restrictions into account. We only come across
restrictions of the form [fi(x) < fi(x

∗
i) + εi] for feasible interior points. These sets are convex. The

projection onto the boundary variables πxbdy
is linear and therefore πxbdy

([fi(x) < fi(x
∗
i) + εi]) is

convex. As the discretization is linear in the boundary variables, the feasible boundary variables of
the Saint-Venant equations are convex. As the intersection of convex sets is convex, we obtain a
convex set of boundary variables.

The problem, however, is that one loses information when projecting onto the boundary variables
for the set πxbdy

([fi(x) < fi(x
∗
i) + εi]) where this did not happen for the Saint-Venant equations.

Nevertheless, we always have a feasible point by construction. In a small enough region of this
feasible point the inequalities fi(x) < fi(x

∗
i) + εi are satisfied. Since the map g from the boundary

to the interior variables is continuous in a sufficiently small neighborhood around the feasible point,
all the values fi(x) are strictly below fi(x

∗
i)+ εi. Since g is continuous, we can make the distance of

the interior part of the feasible point sufficiently small if the boundary part is sufficiently close. We
note that for a sufficiently small region, we can satisfy all the inequalities fi(x) ≤ fi(x

∗
i) + εi. Since

the space of interior variables is not restricted, the vector constructed by combining the boundary
part ybdy and g(ybdy) is a feasible point. Thus, we have local path connectedness.

The hope is that the path-connected region is sufficiently rich to discover new solutions. Currently,
we are not able to conclude that we can uniquely trace the solution in any order of optimization.
Nor can we find sufficient conditions on the objective functions.

3.2 Computational Methods

The above-described Homotopy method is implemented in the rtc-tools package developed by
Deltares. From our analysis, we can conclude that this Homotopy method at least ensures that we
find a locally optimal solution. For the use case of water management, this is considered sufficient,
as long as the solution is robust. That means that the solution does not change significantly every
hour, so that the advice of the pump operators is consistent every hour. Deltares indeed found this
to be the case for their model.

Now, we move to the second goal of our project. Even though the Homotopy method seems to
work quite well - even from a theoretical perspective - it is computationally quite expensive; to trace
the optimal solution, we have to solve the optimization for every theta step. In practice, the runtime
is already significantly reduced by taking steps of ∆θ = 0.5. However, the runtime is still significant.
To improve this, we came up with two methods that build on the Homotopy method. The gist of
these methods is that they skip certain steps in the optimization process to reduce the runtime. In
the following sections, these methods will be explained in more detail.

12

3.2.1 SmartSeed Method

The first method for decreasing the runtime is the so-called SmartSeed method. In this method,
we make use of the fact that the optimization is run every hour. Since every run gives us data
for the next 48 hours, we can use the output of the previous run, as a seed for θ = 1 for the next
run. This way the linear θ = 0 and intermediate θ = 0.5 can be skipped, which could result in
significant runtime improvements. Since the solution found in the previous hour should be quite
robust, we expect this to be a sufficient seed to find the optimal solution. Nonetheless, this previous
computation does not always function as a sufficient seed. In this case, the SmartSeed method falls
back on the Homotopy method. That way, we can ensure that the convergence of the solutions is
still robust. However, by the previous argument, this should not happen too often under normal
conditions. The SmartSeed method is schematically displayed in Figure 1b.

3.2.2 Linearising after T = 24

A second approach for decreasing the runtime is solving the non-linear problem for the first 24
timesteps, and solving the linear system for the last 24 timesteps. The justification for this ap-
proach comes from the use case of the model. The most important part of the output of the model
is the prediction for the first 24 hours, while the last 24 hours are merely an indication of what is
to come. The latter ensures that the operators can prepare for more extreme changes, in case of
heavy rainfall, for example, but we do not need to know exact water levels with high accuracy. By
skipping half of the nonlinear steps, we might exchange some accuracy for a significant improvement
in runtimes. Schematically, the linearising method is displayed in Figure 1c.

13

T\θ 0 0.5 1

1

2

...

24

25

...

48

(a) Homotopy method

T\θ 0 0.5 1

1

2

...

24

25

...

48

(b) SmartSeed method

T\θ 0 0.5 1

1

2

...

24

25

...

48

(c) Linearsing method

Figure 1: Schematic overview of the different methods. In the header, the θ steps are displayed,
while the index represents the time. For the green nodes, the optimization problem is solved for
this combination of (t, θ). In (a) the conventional Homotopy method is displayed. Here, we solve
all timesteps for all θ. In (b), a schematic view of the SmartSeed method is displayed. Here, we
use the input of the previous run as a seed for θ = 1, indicated by the vertical arrows. This way
the θ = 0, 0.5 steps can be skipped. Lastly, (c) represents the linearization method. For the first 24
hours, the Homotopy method is used, but for the last 24 hours, only the linear model is solved.

14

4 Computational results

Originally, the use case of the Homotopy method is to apply it to the Rijnland model. Since this is
quite a large model and thus has long runtimes we decided to test our methods on a smaller model.
Our methods will be tested making use of the cascading channels test model from the RTC-Tools

package, provided by Deltares. Figure 2 depicts a schematic representation of the test model.

UpperChannel 1 UpperChannel 2

MiddleChannel 1

MiddleChannel 2

LowerChannel 1 LowerChannel 2

Figure 2: Schematic representation of the Cascading channels test model. Note that this figure is
not to scale. The distance between UpperChannel 1 and UpperChannel 2 is much larger than the
distance between UpperChannel 2 and MiddleChannel 1, for example.

This test model represents a system consisting of long channels, with height differences between
these channels. The fluids in each of these channels are governed by the Saint-Venant equations as
in Equation (1). When optimizing such a system, we have certain goals, such as we do not want the
water level in the channels to surpass a certain threshold to prevent flooding. This could be done by
transporting the water between the channels, by pumping it to a higher channel, or by discharging
it to a lower channel. However, since pumping costs money, we want to minimize the time we spend
pumping. This is where the optimization comes in: we want to satisfy all our safety regulations
while also minimizing costs.

Now that we have established that the test model is indeed a suitable test case, we need to determine
what constitutes a good method. When comparing the different methods, we need to consider three
important criteria. First of all, we would like the solutions to converge to the same, or at least a
similar, optimum. In that case, the robustness of the solutions is conserved. From the Homotopy
method, we have learned that this is ensured by generating a seed that is close to the actual optimum.
This means that the error of the seed compared to the optimum should be small. We define the error
as the difference between the Smart Seed and the Homotopy method, the method that is currently
used by Deltares. Lastly, we want our methods to be more efficient in terms of runtime, where we,
again, compare to the runtime of the Homotopy method.

4.1 SmartSeed

When the SmartSeed is close to the Homotopy method, we can conclude that it is justified to make
use of the SmartSeed method. We therefore compare the seed of the Homotopy method with the
seed of the SmartSeed method. When both seeds are similar, we can assume that they converge to
approximately the same locally optimal solution. To test this, we first run a base scenario test with
the initial conditions from Table 1 using the Homotopy method. This will act as a proxy for the run
of the ‘previous’ hour.

15

Variable Value [m]
UpperChannel.H[1] 1.1
UpperChannel.H[2] 1.0
MiddleChannel.H[1] 0.6
MiddleChannel.H[2] 0.5
LowerChannel.H[1] 0.1
LowerChannel.H[2] 0.0

Table 1: Initial conditions for the base scenario. These initial conditions will be used for the
SmartSeed method.

The results of this run will be used for the SmartSeed method. Now, we consider four different
scenarios, with different initial conditions. Those runs represent the model run in the next hour
when some of the conditions have been changed. Note that only the water height of UpperChannel
1 is changed for these runs, while the other variables are left unchanged.

First, we consider the scenario where the water height is identical to the initial conditions. This
would correspond to a system that was in a steady state, that is, no inflow of water via pumping,
rain, or discharge. Secondly, we consider the scenario where the water level is increased by 1 cm,
which means that we have some inflow of water at UpperChannel 1. This can be considered quite
a realistic scenario. Thirdly, we consider a more extreme scenario, where the difference between the
initial conditions is 5 cm. Lastly, a quite unrealistic case is considered where the difference between
the initial solution is 25 cm. Note that this last scenario is mainly for testing the worst-case scenario
of SmartSeeding. The seeds for the different scenarios are displayed in Figure 3.

16

0 10 20 30 40
T [h]

0.9

1.0

1.1

1.2

1.3

H
[m

]
UpperChannel H1 no deviation

Homotopy solution
SmartSeed solution
Homotopy seed
SmartSeed

(a) Same initial condition

0 10 20 30 40
T [h]

0.9

1.0

1.1

1.2

1.3

H
[m

]

UpperChannel H1 1cm deviation

Homotopy solution
SmartSeed solution
Homotopy seed
SmartSeed

(b) 1cm initial condition

0 10 20 30 40
T [h]

0.9

1.0

1.1

1.2

1.3

H
[m

]

UpperChannel H1 5cm deviation

Homotopy solution
SmartSeed solution
Homotopy seed
SmartSeed

(c) 5cm initial condition

0 10 20 30 40
T [h]

0.9

1.0

1.1

1.2

1.3

H
[m

]

UpperChannel H1 25cm deviation

Homotopy solution
SmartSeed solution
Homotopy seed
SmartSeed

(d) 25cm initial condition

Figure 3: Seeding used by the Homotopy method and the SmartSeed method for different initial
conditions. The red dots represent the final solution, whereas the blue and orange lines represent
the seed that is put into a run with θ = 1. For the Homotopy method, this is the result for θ = 0.5
and for the SmartSeed, this is the result of the previous run.

Two observations can be made about this figure. First, note that the SmartSeed seed does not
start at the same height, even if there are no deviations. This is because the SmartSeed uses the
results from the last hour, so the initial conditions have changed slightly during this one hour.
Furthermore, we see that SmartSeed can be quite different compared to the seed generated by
the Homotopy method. Fortunately, we see that the solutions are quite similar in the end, which
indicates that using the SmartSeed method can be a good strategy for estimating the seed.

4.2 Linearised after T = 24

In this subsection, we want to compare the solutions generated by the Homotopy method and the
linearised method. If these methods result in approximately the same solution, it would be justified
to linearise for the later timesteps. The solutions are plotted in Figure 4.

17

Figure 4: Plot of the solutions for UpperChannel.H[1] for 5 cm deviations from the initial condition
for the linearisation and Homotopy method.

Note that the solution generated by the partially linearised method is the exact same as the solution
generated by the Homotopy method.

4.3 Runtime

Lastly, we would like the proposed methods to reduce the runtime of the optimization. To measure
this, we varied the water heights in all channel nodes by 0, 5, or -5 cm. This results in a total of
36 = 729 different initial conditions. For all these runs, we measure the runtime of the optimization.
The results are plotted in Figure 5.

0 100 200 300 400 500 600 700
Initial condition number

0

2

4

6

8

10

12

14

16

Ru
nt

im
e

[s
]

Smart seed
Linearised
Homotopy

Figure 5: Runtime for the different methods for 5cm deviations from the initial condition.

Qualitatively, the SmartSeed method appears to have a shorter runtime than the linearised and

18

Homotopy method. However, we have to keep in mind that in some scenarios the optimal solution
could not be found. The results can be summarised in Table 2.

Method\Results Average runtime (s) Runtime improvement (%) No. of divergence
Homotopy 2.565 0 105
SmartSeed 1.006 60.8 192
Linearised 2.126 17.1 0

Table 2: Data of the average runtime, a runtime improvement compared to the Homotopy method,
and several initial conditions where no optimal solution was found.

19

5 Discussion and Conclusion

Our analysis and implementations have given us plenty to discuss. We will discuss our findings in
order of occurance in the rest of the report.

5.1 Theory

The main contribution of the theoretical part is reformulating goal programming so that the context
fits that of the Homotopy method. We analyzed the notion of path-stability, as defined in [2], in
this new setup. The main insight is that we think one needs to focus on one objective at a time
to ensure a traceable Homotopy path. In addition, we can also exploit that the problem at θ = 0
is convex, if we allow for the more general definition of a convex problem. We use this to find a
point to start the second Homotopy. However, this is only a beginning in the understanding of the
Homotopy method in multi-objective optimization.
Although we have tried to study path-connectedness rigorously, and it does look promising for
multi-objective optimization, the topic still requires more research. Our endeavors do not guarantee
global path-connectedness for the goal-programming approach. However, we can guarantee local
optimality, which, as Deltares commented, is in practice good enough.

5.2 SmartSeed

The results of the experiments with the SmartSeed method are quite well summarised in Figure 3.
First note that the SmartSeed, the blue dots, are identical in all of the figures. This is expected,
since these are the results of the last run/hour, and thus will not change. For all the SmartSeeds we
see that initially, they are quite far off compared to the seed computed by the Homotopy method.
This is to be expected since the initial conditions are perturbed. After about 12 hours the seeds
move closer to each other. This means that the SmartSeed is initially not a very good seed, but
for later times it is. When comparing the solutions of the SmartSeed method with the solution of
the Homotopy method, most of these differences seem to disappear. For the 0cm, 1cm, and 5cm
deviations, we only see a difference in the solution in a small time window of a few hours. For the
25 cm deviation, the results are identical. What we can conclude from this is that the SmartSeed
might not be close to the seed generated by the Homotopy method, but it does generate quite
similar solutions. Qualitatively, the solutions even seem to be identical, which is an indication of
the robustness of the method.

5.3 Linearising after T = 24

The results plotted in Figure 4 suggest that linearising the model after T = 24 would give the same
result as the Homotopy method. This is not as expected, since the model is inherently non-linear.
Because of this, we believe that the implementation of the linearised model contains a bug and we
have to be skeptical of these results.

5.4 Runtime

Lastly, we need to take a look at the results for the runtime. We start with the Homotopy method.
Here we see that most of the time, the runtime is under 2 seconds. However, there are also quite
some initial conditions for which the solution took longer to find. We suspect that in those cases the
theta step of 0.5 was too big and we needed to backtrack. For the linearising method, we see that
the average runtime is slightly above 2 seconds. This does not make sense, since for half of the time
steps we only solve the linear model, which supports our hypothesis of the previous section. What
we do see is that this model seems to be a bit more consistent in its runtime, perhaps because it
needs to do less backtracking. Lastly, the SmartSeed method is about 60 % faster when compared
with the Homotopy method, which is as expected. The drawback of this method is that it is not as
robust as the Homotopy method, in the sense that for quite a large portion of the initial conditions,
no optimal solution is found.

20

5.5 Conclusion

From our research, we can conclude that the SmartSeed method seems to be a good method to
improve the runtime while keeping the solutions quite similar to the solutions generated by the
Homotopy method. We have tested this to be the case for small and large deviations of the initial
conditions. However, we have not tested this for changing the inflow variables of the system. For
the linearising method, we also see decreases in the runtime and identical solutions to the Homotopy
method. However, as stated before we are quite sceptical towards these results.

5.6 Remarks

An important remark to make is that all the analysis and tests were done on a scaled-down version
of the model used by Deltares, namely the so-called cascading channels model. However, this model
still uses the same optimization method, thus we can expect it to generalize to the larger model.

5.7 Recommendations

Our suggestion would be to try to implement the SmartSeed method in the larger model and test
if the robustness and runtime improvement of this method generalize to the larger model. Besides
this, we believe that the linearising could also yield significant runtime improvements if implemented
correctly. Furthermore, it might be worth studying the effect of changing the inflow and outflow
variables on the SmartSeed method. In our research, we have not been able to implement this due
to time constraints, but it is an important aspect of the model.

5.8 Acknowledgements

We want to thank the problem posers Ailbhe Mitchell and Bernhard Becker for their help in un-
derstanding the problem, explanations of the code, and ready availability to answer our questions
along the way.

21

References

[1] B. B., O. D., and Piovesan, “A comparison of the homotopy method with linearisation ap-
proaches for a non-linear optimization problem of operations in a reservoir cascade,” Energy
Systems, 2023. doi: https://doi.org/10.1007/s12667-023-00608-w.

[2] J. Baayen, T. Piovesan, and J. VanderWees, Continuation method for pde-constrained global
optimization: Analysis and application to the shallow water equations, 2020. arXiv: 1801.06507
[math.OC].

[3] G. Eichfelder, “Twenty years of continuous multiobjective optimization in the twenty-first cen-
tury,” EURO Journal on Computational Optimization, vol. 9, p. 100 014, 2021, issn: 2192-
4406. doi: https://doi.org/10.1016/j.ejco.2021.100014. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2192440621001416.

[4] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

22

https://doi.org/https://doi.org/10.1007/s12667-023-00608-w
https://arxiv.org/abs/1801.06507
https://arxiv.org/abs/1801.06507
https://doi.org/https://doi.org/10.1016/j.ejco.2021.100014
https://www.sciencedirect.com/science/article/pii/S2192440621001416
https://www.sciencedirect.com/science/article/pii/S2192440621001416

	Introduction
	General description of the current model
	Structure of the report

	Mathematical Description of the current methods
	A Mathematical Description of Goal Programming
	Pareto weighting
	Goal programming

	Homotopy method
	Barrier formulation and path stability for single objective optimization
	Barrier formulation for multi-objective optimization
	Order of optimisation

	Methods and Analysis
	Analysis of Homotopy method in Multi-Objective Optimisation
	Saint-Venant Equations Discretised
	Assumptions needed for the model.
	Path-Stability
	Path-Connectedness

	Computational Methods
	SmartSeed Method
	Linearising after T = 24

	Computational results
	SmartSeed
	Linearised after T=24
	Runtime

	Discussion and Conclusion
	Theory
	SmartSeed
	Linearising after T=24
	Runtime
	Conclusion
	Remarks
	Recommendations
	Acknowledgements

