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Summary 

Within optimization, the added accuracy in using non-linear relationships often comes with 
the trade-off of longer run times. A software solution was developed which allows modellers 
to easily import a seed to an RTC-Tools optimization run. Combined with time-dependent 
linearization, performance gains of 60% regarding run-times were observed in complex, 
non-linear multi-objective operational systems.  

With improved run-times, non-linear optimization problems become more accessible. 
Clients can solve more accurate models of their systems, allowing them to make more 
informed decisions about how they use energy.  Additionally, the advice of the model is far 
more valuable when run times are fast and advice can be implemented more quickly before 
conditions change.  

Introduction 

During this project, as part of the mathematics for Industry course at Utrecht Universiteit, a group 
of 7 students worked for 10 weeks developing ideas and designing a prototype implementation 
to speed up solving non-linear optimization problems. Following this student project, Deltares 
generalized this approach and combined it with other initiatives to evaluate the performance and 
integrate these methods within the RTC-Tools software.  

The aim was to find methods which could be applied to the operational Rijnland system which 
consists of a complex non-linear optimization of the water system. This model has many 
variables and thus was deemed too complex for students to focus on for a short period of time. 
Thus, students considered the example model “cascading channels” available as part of the 
RTC-Tools repository to test approaches to speed up non-linear models with few variables.  

In this report we consider  

1. Motivation 
2. Results from the student project 
3. Generalizations to apply method within RTC-tools 
4. Evaluation of results applied to Rijnland system 
5. Conclusions 
6. Next steps 



 
1. Motivation 

Non-linear optimizations problems are in general more difficult to solve than linear ones, in part 
due to their nature with the possibility of many local minima. Methods are applied in RTC-Tools 
to support solving such problems. In this project we aim to improve these and provide scientific 
foundation to the methodology. Therefore, the goals of the project were two-fold 

a. Find ways to solve non-linear problems more efficiently. 
b. Explore if mathematical statements be made about these approaches. 

Homotopy is a method implemented in RTC-Tools with the aim to facilitate the solving of non-
linear optimization problems. At is core, this is a continuation method which first solves and 
linearized problem, and then perturbs a parameter from 0 to 1 until the non-linear problem is 
solved. We refer to this parameter as theta.  

The idea here is to achieve a path stable solution by slowly perturbing the equations defining the 
optimization problem. The seed (initial guess for the solution) is given by the solution to the 
previous problem. The assumption in the current methodology is that the global minima for the 
linearized problem will be close to a local minima of the non-linear problem. In practise, a global 
minima to the non-linear problem is not necessary, but it is important that advices to not change 
much from one hour to the next. 

Claims can be made regarding path stability when using this method with a single optimization 
(single objective), but it is more difficult to make such claims for multi-objective optimization 
problems solved in a lexicographic way. In Lexicographic goal programming, goals are solved in 
order of priority, where constraints are added sequentially such that a high priority objective 
cannot be met any worse when solving for a low priority objective.  

For example, consider we have two goals, listed in order of priority, 

1. keep water levels within bounds 
2. minimizing energy consumption 

Then we first solve the optimization problem over the entire time horizon with the single objective 
to keep water levels within bounds. If it is possible to keep water levels within bounds at all times, 
then this will also be reflected in the solution to the optimization problem for the second priority 
when we minimize energy consumption. If it was not possible to keep water levels within bounds 
at all times, then we make sure the exceedance of these bounds is no worse when also solving 
for the second priority. 

With this lexicographic approach, no research had been conducted on the impacts of 
continuation methods (homotopy) on path stability.  

The homotopy method as applied in RTC-Tools required solving optimization problems for all 
priorities for each value of theta. If a step size of 0.5 is considered sufficient (default setting), this 
means three times as many optimization problems are solved as there are priorities. This can 
become very computationally expensive as  

• These runs cannot be parallelized as they rely on the solution to the previous problem in 
the sequence for a seed. 

• Non-linear optimization problems in general take longer to solve than linear problems, 
only optimization problems where theta=0 (1/3 of problems) are linear and easy to solve. 



Therefore, methods were explored which would improve the existing workflow and lead to a 
reduction in run-time. 

2. Results from the student project 

Conclusions:  

a. Computational efficiency: A method was outlined to speed up solutions to non-
linear problems by providing a seed from a previous model run, and directly solving 
the non-linear problem.  
This approach was tested on the minimal model case “casacading channels” and the 
results showed that we could expect a speed up in model performance when the 
provided seed was close enough to the optimal advice. 
 

b. Mathematical theory: Although we have tried to study path-connectedness 
rigorously, and it does look promising for multi-objective optimization, the topic still 
requires more research. Our endeavours do not guarantee global path-
connectedness for the goal-programming approach. However, we can guarantee 
local optimality. 
The main insight is that we think one needs to focus on one objective at a time to ensure 
a traceable Homotopy path. This supports the approach outlined in section 4, experiment 
“b” where only the first priority is solved for theta != 0. 

For details we refer to the report written by the students. 

3. Generalizations to apply method within RTC-tools 

The students result showed promise but the implementation was specific to the “cascading 
channels” example. The next steps were to generalize this feature within RTC-Tools and ensure 
it is robust enough for use in an operational context. This consists of the following steps 

• Method to provide seed to the model (in a transparent way) 
o MultiSeedMixin: An/multiple additional xml timeseries can be provided to the 

model containing seeds for variables. RTC-Tools will detect for which timesteps 
relevant to the current optimization problem a seed has been provided and use 
this for the first optimization problem.  

▪ This approach allows for simple provision of seeds. For example via FEWS 
– this can be the full solution to a previous model run. 

▪ Values do not need to be provided for all variables, nor for all timesteps. 
If no seed is provided the default will be used. 

▪ By allowing separate inputs for the seed and the timeseries_import this 
ensures maintenance for the models is simple – it is clear which values 
are used for seeds only, and which are read to the model as 
bounds/targets/additional information.  

• This also allows for seeds to be provided for “controlled inputs”. 
This addition results in significant performance gains. 

▪ Multiple seeds can be provided to the model and chosen dynamically or 
used as a fallback (see below). 

• Fallback options such that the model will not fail due to a bad seed (possible in extreme 
conditions where forecasts/conditions change in a short amount of time). 

o RTC-tools code refactored to make seeding of the model transparent in all cases 



▪ If a seed is used then an info message is added to the logger 
o General goal programming: 

▪ imported seed is used for solving the very first priority. If this priority fails, 
the model will be resolved using the default seed 

o Homotopy: 
▪ If an imported seed is provided then the non-linear problem can be solved 

directly. If this fails then the fallback option is to solve the problem using 
the usual homotopy routine. 

• Unit tests 
o Added to ensure new code is included in code coverage. 

Throughout this process we collaborated with the community of contributors to RTC-tools as it 
is an open source project. This highlighted the need for an agreed-upon governance structure for 
the software, as no existing framework was in place to resolve disagreements among 
stakeholders. 

4. Evaluation of results applied to Rijnland system 

Homotopy + time-dependent linearized time horizon 

In parallel to the student project, developments were implemented in the Rijnland model to 
decrease run time by other methods. This included choosing a portion of the time horizon to 
linearize thus simplifying the optimization problem. Such an approach is appropriate in this case 
as the model runs for a 48 hour period and is rerun every hour with updated inputs/forecasts. 
Thus, the end of the time horizon is only included in a model run such that optimal advice is given 
upcoming hours. However, for a given run, the advice for the end of the time horizon is not 
implemented directly – the model will have re-run 47 times before that time with updated data. 
This approach also included solving only the first priority of the optimization problem until the full 
non-linear system is considered (theta = 1). The thesis behind this is that this is the most efficient 
way to solve the problem without an external seed provided, and also aligns with the conclusion 
above regarding path stability for multi-objective optimization. 

We studied the results of the optimization where the linearization described above was used. It 
was concluded that there was not a significant loss in accuracy. That is because the model is re-
run every hours with a 48hr time horizon. It is important to include the full 48 hour forecast in the 
model run such that the advice for the first hour is influenced by future forecasted events, but 
the forecast has higher uncertainty in the future.  

An example is seen in the figure below. Here we consider various experiments, a and b contain 
no linearization, c and d contain linearization of the final 24 or 36 hours of the time horizons. We 
see that the advice for the first few hours remains consistent between all experiments and then 
begins to deviate. Since it is only the advice of the first hour which is implemented, this is not a 
cause for concern.  

 



 

Figure1Results showing the impact of linearizing portions of the time horizon on model results. It can be seen that the 
advice for the first few hours remains largely unchanged 

Combined results 

We tested the same batch of 80 closed loop runs with various model set ups, finally incorporating 
seeding with the approach outlined above. Concretely these were 

• “original”: Original set up: no seeding, default homotopy options 
o Solve every priority for theta = 0 (linear) 
o Solve every priority for theta = 1/2 
o Solve every priority for theta = 1 (non-linear 

• “b”: solve only the fist priority for theta !=1 
• “c(24)”: linearize final 24 hours of time horizon 
• “d(24)”: solve only the first priority for theta !=1 and linearize final 24 hours of time horizon 
• “seed”: solve non-linear problem directly and linearize final 24 hours of time horizon and 

provide a seed (solution from previous run) 

It can be seen in the boxplots below that average run times are significantly decreased when 
using the final approach “seed” compared to all other methods. A performance increase of more 
than 60% in terms of run time is observed with using the new available approach with seeding 
plus linearization compared with the original set up.  



 

Figure 2: boxplots showing the runtimes of identical closed loop models under different set-ups. Mean run times are 
also displayed per experiment.  A significant improvement can be observed when comparing the original setup (center) 
with the results from this project (far left). 

5. Conclusions 

In this project we were able to develop a software solution which allows modellers to easily 
import a seed to an RTC-Tools optimization run which can be used to significantly speed up the 
run time of a model. This is particularly useful for non-linear optimization where the added 
accuracy in using non-linear relationships often comes with the trade-off of longer run times.  

With improved run-times for non-linear optimization problems, clients can solve more accurate 
models of their systems, allowing them to make more informed decisions about how they use 
energy. For instance in the Rijnland system, one objective of the model is to minimize energy 
consumption. The advice of the model is far more valuable when run times are fast and advice 
can be implemented more quickly.  

The insights and time spent by the students from Utrecht was invaluable. They were able to 
explore the problem through an original lens, and utilizes their backgrounds in an array of 
mathematical disciplines to propose fresh approaches.  

6. Next steps 

We have seen significant improvements in the run time for complex non-linear models which are 
directly applicable to other operational systems we maintain and develop. 



Applications: This method is applicable in all applications where and RTC-Tools advice module 
is solved in a closed loop environment. Both for non-linear models using homotopy, or general 
goal programming applications. This approach could also be applied in RTC-Tools simulation 
where non-linear equations are often solved – when very complex the seed can be important.  

Integration with AI/ML: In applications where models are not run in closed loop, it would be 
possible to use AI/ML algorithms to find a suitable seed from a database of previous model runs. 
This process could assess the inputs to the models, find a similar import and provide the result 
of this run as a seed to the model. The approach we have implemented also supports multiple 
seeds to be provided to the model. 

Analysis of objectives: Often if a good seed is provided then high priority objectives are already 
satisfied by the seed. If we can determine this in advance then we would save the time spent in 
solving these objectives. This is likely applicable in many closed loop operational systems as 
advice should not vary much from one model run to the next, and often high priority objectives 
are expected to be satisfied under non-extreme conditions. Note: for such an approach the 
provided seed should be extrapolated for the final timestep(s) which do not overlap with the 
current run. 

Model explainability: Within the Rijnland system there is potential to further increase model 
performance by performing the “pump analysis" in a more efficient manner. This is a module 
designed to evaluate which goals types have the largest impact on the final advice of the model. 
Whether these be energy related, salt driven or water levels. The current implementation means 
solving a sub (non-linear) optimization problem after each priority which is a very expensive 
approach. In fact with the new implementation from this project, the pumping analysis can 
account for as much as 40% of the run time. Therefore, alternative approaches should be 
considered. In fact this module answers a question which is valuable information for every 
operational system with an optimization advice model where goal programming is used. 
Therefore it would be invaluable to develop a generic approach which could be easily applied to 
RTC-Tools models in general. This would lead to great advancements in the explainability of 
optimization advice for water management.  

Other hot starting options: Different optimization problems support different methods of warm 
or hot starting the solver. This can often lead to large improvements in computation time. For 
instance MIP solvers allow users to provide a basis which can often be more valuable than a 
seed. Once such functionality is supported by casadi this could further improve run-times for 
operational models which are run with high frequency. 

Mathematical theory: Exploring path stability for multi-objective non-linear optimization 
problems remains an interesting topic on the cutting edge of operations research. More time 
invested in investigating the underlying problem definition and path-connectedness would likely 
lead to strong supporting claims for our applied methodology, or better methods of solving such 
problems.  

Validation of linearized equations: We observed significant differences in solutions when using 
linearized/non-linearized equations. Validation should be performed on the linearization of these 
equations as they have a large influence on the solution. 

Model explainability: In the Rijnland system, the model explainability module now accounts for 
~50% of the run-time, more computationally efficient and accurate methods should be 
considered which delivers core information to decision makers.  


