

CIP: Confidence intervals for SWAN
wave forecasts

surrogate North Sea wave model to apply wind ensembles

2 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

CIP: Confidence intervals for SWAN wave forecasts
surrogate North Sea wave model to apply wind ensembles

Author(s)
Caroline Gautier
Elias de Korte
Guus van Hemert
Joana van Nieuwkoop

3 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

CIP: Confidence intervals for SWAN wave forecasts
surrogate North Sea wave model to apply wind ensembles

Client Rijkswaterstaat Water, Verkeer en Leefomgeving

Contact Joost Driebergen

Reference -

Keywords Surrogate model, Machine Learning, SWAN, waves, wind ensembles, uncertainty

Document control

Version 2.0

Date 20-12-2024

Project number 11210320-018

Document ID 11210320-018-BGS-0001

Pages 40

Classification

Status final

Author(s)

Caroline Gautier
Elias de Korte
Guus van Hemert
Joana van Nieuwkoop

4 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Summary

Generally, the performance of the SWAN wave models used at Rijkswaterstaat Operational
Systems (RWsOS) is well known and model bias is within a few percent. In contrast the spread
can be large in certain cases, in particular for low frequency waves He10. Therefore, we aim
to model uncertainty to anticipate deviations in the wave forecast from actual wave conditions.
An important constraint for RWsOS is that the future model is computationally feasible. The
approach for this report is twofold. The uncertainty was first modelled and compared with
observations to verify the uncertainty model forecast. Secondly, a fast data-driven surrogate
model TurboSWAN was trained on the ensemble wave forecast input and output and compared
to the physical wave model SWAN results.

The uncertainty in the wind is modelled, using the ECWMF TIGGE wind ensemble to force the
wave model for a year of three-day forecasts (2022) and several additional non-sequential
months including storms (in 2013 and 2017-2022). We assumed errors in the wind fields
dominated. This was in part true. For longer lead times (after 2 days), uncertainty was well
captured. However, at shorter lead times uncertainty is often underpredicted and likely comes
from other uncertainty sources (e.g. boundary conditions, (missing) physics). Another limitation
is the relatively coarse resolution of ECMWF TIGGE wind fields compared to the HARMONIE
wind fields.

To create a faster model, a surrogate model TurboSWAN was trained on the ensemble wave
forecast input and output. A convolutional neural network with a U-net based architecture was
used to train TurboSWAN, mainly because these types of networks excel in spatial pattern
recognition. TurboSWAN is very fast and already able to model the dominant dynamics.
However, the evaluation shows that during storms errors at various measurement stations are
still too large for an application. Over the entire grid, the mean error is approximately 0.5 m in
most parts for significant wave height, with larger errors near the coast.

The prototype of TurboSWAN is considered a good starting point for further development.
There are several ways in which we can improve both the uncertainty representation and the
AI model TurboSWAN. We recommend to further study the underrepresentation of the
ensemble spread in the ensemble model. The AI model TurboSWAN can be improved in
several ways: testing different input combinations, tuning hyperparameters and testing
variations of the net architecture.

5 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Contents

Summary 4

1 Introduction 7
1.1 General 7
1.2 Objective 7
1.3 Set up of the report 7

2 Approach and data 8
2.1 Approach 8
2.2 Data 9
2.3 Snellius 9

3 SWAN wave computations 10
3.1 Introduction wave computations 10
3.2 SWAN-North Sea 10
3.2.1 Period Selection 10
3.2.2 SWAN Version 10
3.2.3 Model input 10
3.2.4 Model numerics and physics 11
3.2.5 Computational procedure 11
3.2.6 Model output 12
3.2.7 HPC (Snellius) workflow and tools / Code 13
3.2.8 Computational aspects on Snellius 14
3.3 Ensemble Verification 14

4 TurboSWAN surrogate model 20
4.1 Introduction 20
4.2 Introduction machine learning model 20
4.2.1 Neural networks 20
4.2.2 Convolutional Neural Networks 21
4.3 Training, validation and testing data 22
4.4 TurboSWAN 25
4.4.1 Network architecture choice 28
4.5 Comparison to SWAN results 28
4.5.1 Computational time 33
4.6 Recommendations for further improvement 34

5 Conclusions and outlook 35
5.1 Conclusions 35
5.2 Outlook for 2025 35

6 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Literature 37

A Ensemble validation 38

7 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

1 Introduction

1.1 General
Within the Rijkswaterstaat Operational Systems (RWsOS), SWAN wave models are used to
provide wave forecasts for both the Dutch coast and the larger lakes. These forecasts are
essential for save navigation and safety during highwater conditions.

Based on several hindcast studies (Deltares, 2023a and Deltares, 2024a,b) the overall model
performance of these wave forecasts is well known. The bias in significant wave height Hm0 is
in general good with just a few percent deviation. However, the scatter in wave height can be
rather large, especially for the low frequency wave height HE10. As the wave forecast can
deviate significantly from the actual wave conditions, a measure of uncertainty of the wave
forecast is requested by the wave forecast users, the Rijkswaterstaat Water Management
Centre (WMCN) and the Hydro Meteo Centre (HMC). Confidence intervals of the wave forecast
could indicate whether there is a large uncertainty in the forecast, for example due to
uncertainty in the wind. The challenge here is to provide uncertainty of the wave forecast
without adding a significant amount of computational time to the forecast suite.

This project - part of the Rijkswaterstaat Corporate Innovation Program (CIP) – is set up to find
a suitable way to add an uncertainty range to wave forecasts. Note that the uncertainty of the
forecast consists of different types of uncertainty, like model and input uncertainties (wave
boundary conditions, wind, water levels etc.) and uncertainties for increasing lead times. The
project focusses for now on the wind uncertainty by assessing ECMWF wind ensemble runs
for the SWAN North Sea model. This choice is made, as the wind is a primary force for the
waves in the North Sea and Lakes. A project follow-up is needed to bring the concept eventually
to the end goal: confidence intervals are added to the operational wave forecasts of RWsOS.

1.2 Objective
The objective of this project is to develop a concept method to provide confidence intervals to
operational wave forecasts, making use of ECMWF ensembles for wind input.

1.3 Set up of the report
The approach of this project is discussed in Chapter 2. Furthermore, in this chapter an overview
is given of the data and computing power that has been used. Chapter 3 focuses on the SWAN
wave computations, with a description of the model set up and the ensemble wave forecast
runs. In addition, the ensemble wave forecast is analysed. Subsequently, Chapter 4 gives an
overview of the TurboSWAN surrogate model set up and the results. In Section 4.5 the
surrogate model is run with the wind ensembles from ECMWF for a short period. Finally,
conclusions are drawn in Chapter 5 and an outlook for follow-up study is given.

8 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

2 Approach and data

2.1 Approach
Although several sources of uncertainty add up to the overall uncertainty of a forecast, the
focus for this study is on uncertainties in the wind input as it is expected that the wind
contributes largely to the wave forecast uncertainty. This means that uncertainties related to
the wave model (physics, numerical schemes, convergence, resolution, schematisation) and
other model input than wind (bathymetry, water levels, currents, boundary conditions) are not
considered.

The European Centre for Medium range Weather Forecasts (ECMWF) delivers with their
Ensemble Prediction System (EPS) one control weather forecast starting from the best guess
initial conditions and fifty members starting from slightly perturbed initial conditions. This model
will be used in this study as input for the SWAN North Sea forecast.

In an operational setting, it would be too time consuming to perform 51 SWAN forecast runs to
assess the spread in wave parameters caused by the 51 ensemble members of wind.
Therefore, a method is needed to be able to run all 51 ensemble members in an acceptable
amount of time. Various methods were considered:

• Increasing computing power for example by using a supercomputer and running the
ensembles simultaneous. This option may be interesting in the future. For the
operational system it is not yet feasible, as the current set up does not allow for more
models to be run.

• Decreasing resolution of the current wave model for example by using Multilevel
Monte Carlo techniques. Van Ooijen (2023) studied Multilevel Monte Carlo methods to
speed up the ensemble wave forecast. His conclusion was that ensemble forecasts
can be sped up by a factor four to eight without becoming much more inaccurate.
However, the ensemble seemed to underestimate the uncertainty systematically.
Some recommendations were given to continue the research and improve the results.
Although this might be a feasible method in the future, it was chosen not to focus on
this method in the current study.

• Use of an alternative fast wave model for example a fast alternative wave model or
machine learning model. Deltares (2023b) looked at fast wave models, as an
alternative for SWAN, however either the speed up in the North Sea was marginal or
the accuracy was not acceptable. Another option is to use a machine learning model
that has been trained on wave data. As this option could produce a wave model that
is considerably faster than SWAN (51 ensembles in just a minute) and could be
acceptable in terms of accuracy, this option was chosen to explore further.

This means that in this study we aim to develop a machine learning model, a so-called
surrogate model. This model is based - without any physical equations - on similar input that
SWAN receives, like spatial fields of wind speed, wind direction, water level, current, wave
boundaries and bathymetry. It will produce three wave parameters as output on the whole
model domain. Hereto the model is trained with thousands of combinations of input and SWAN
output, most of them made within this project on the Snellius supercomputer at Surf Sara. It
must be realised that if the surrogate model performs perfectly, it will give identical results as
SWAN would, but never better than that.

Ultimately, the wind ensembles can be used to force the fast wave model. The result, being
the spread in wave parameters Hm0, Tm-1,0 and HE10, will be applied on the outcome of the one

9 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

SWAN run which used the control wind field as input. In the present study the spread in wave
direction is not included. In future we will discuss the needs with possible users.

2.2 Data
For this project we make use of the following data:
• The existing SWAN-North Sea model swan-noordzee-j22_6-v1a, consisting of a

computational grid definition, bathymetry and model settings, see Factsheet SWAN-
Noordzee.

• ECMWF wind ensemble members for the period 2007-2024 from the TIGGE project (“The
International Grand Global Ensemble” TIGGE archive - TIGGE - ECMWF Confluence Wiki)

• Model input (water levels, currents, wave boundary conditions) for selected events as
training data. Water levels and currents from DCSM WAQUA or FM and wave boundary
conditions from ECMWF WAM.

• Observations of waves and wind to validate the wave model results, downloaded from
matroos.deltares.nl.

2.3 Snellius
All computations have been done on Snellius: the National Supercomputer at SURF Sara. For
this project we arranged the following computational capacity: 350.000 SBU on CPU thin nodes
(78% used) and 300.000 SBU on GPU (87% used), as well as 7TB project space (100% used).

https://iplo.nl/thema/water/applicaties-modellen/modelschematisaties/noordzee-kust/
https://iplo.nl/thema/water/applicaties-modellen/modelschematisaties/noordzee-kust/
https://confluence.ecmwf.int/display/TIGGE

10 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

3 SWAN wave computations

3.1 Introduction wave computations
In this chapter the set up and analysis of SWAN ensemble computations has been described.
The 50 ensemble members of ECMWF wind were used to force the SWAN-North Sea model.
The SWAN model computations are used to train the surrogate wave model. In addition, it is
checked to which extent wind and wave measurements fall within the confidence bounds of the
ECMWF wind ensembles and the ensemble SWAN computations.

3.2 SWAN-North Sea

3.2.1 Period Selection
For the training of the TurboSWAN surrogate model (see Chapter 4), a realistic representation
of wave conditions is selected to train the surrogate model, but within acceptable computational
time. In this light one year (2022) of daily forecasts were computed, each with 72 hours forecast
lead time. The year 2022 covered storms like Corrie, Malik and Eunice, but might not capture
the full range of relevant system dynamics. To anticipate on this expectation, we modelled
additional seven non-sequential months that captured storms in the years 2013 and 2017-
2023. We expect this will diversify the training data of the dynamics that are most interested in
predicting.

3.2.2 SWAN Version
The latest available Deltares SWAN version was used: swan_deltares41_45AB_2_omp.exe.
This executable was compiled on Snellius.

3.2.3 Model input
Table 3.1 gives an overview of the input data that was used to force the SWAN-North Sea
model.

The operational SWAN-North Sea model uses ECMWF WAM forecasts for its wave boundary
conditions. These data have been available at Deltares since 2013 and can therefore be used
for all periods. The data are available for every three hours and have been downloaded from
Matroos.rws.nl. Note that these are not ensemble boundary conditions. ECMWF also provides
a WAM wave ensemble that can be used to include uncertainty in the boundary conditions in
the future.

For water levels and currents the operational SWAN-North Sea uses WAQUA DCSMv6 data
produced by the RWsOS forecast. These data are available every hour and have been
applied to SWAN with a 1-hour interval. Before 2021 the DCSMv6 model was forced with
Hirlam wind fields, after 2021 with HARMONIE wind fields. The data have been downloaded
from Matroos.rws.nl.

The operational SWAN-North Sea model uses HARMONIE (KNMI) fields as wind forcing,
which comes on a high resolution 2.5 km x 2.5 km. However, at the moment HARMONIE does
not offer wind ensembles and therefore the fifty wind ensemble members of ECMWF are used.
A selection of the ECMWF global ensemble forecast data can be downloaded via the TIGGE
dataset (ensemble forecast data from thirteen global weather prediction centers). ECMWF-
TIGGE has a coarse resolution of 0.5⁰ x 0.5⁰ and does not have the wind stress included as a
variable. Therefore, we directly used U10 wind fields from TIGGE without applying a conversion
to a pseudo wind field, as commonly done with the operational wave models. The wind data is

11 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

available every six hours. In this study the same 6-hour interval has been applied up to a lead
time of 72 hours. In TIGGE the forecasts were available twice daily (00:00h and 12:00h),
however only the 00:00h forecast was used.

Table 3.1 Overview of model input data

Period Boundary
conditions

Boundary
type

Water level & Flow Wind
forcing

Storms Missing
data

Year
2022

Knmi_ecmwf_waves 2D spectra Dcsm_v6_harmonie TIGGE Corrie, Malik
Eunice

Dec 2023 Knmi_ecmwf_waves 2D spectra Dcsm_v6_harmonie TIGGE Pia

Feb 2023 Knmi_ecmwf_waves 2D spectra Dcsm_v6_harmonie TIGGE Swell event

Feb 2020 Knmi_ecmwf_waves 2D spectra Dcsm_v6_hirlam TIGGE Ciara

Jan 2019 Knmi_ecmwf_waves 2D spectra Dscm_v6_hirlam TIGGE

Jan 2018 Knmi_ecmwf_waves 2D spectra Dscm_v6_hirlam TIGGE

Oct 2017 Knmi_ecmwf_waves 2D spectra Dscm_v6_hirlam TIGGE 24 to 31 10

Dec 2013 Knmi_ecmwf_waves 2D spectra Dscm_v6_hirlam TIGGE

3.2.4 Model numerics and physics
Table 3.2 gives an overview of the model numerics and physics.

Table 3.2 Overview of model numerics and physics

SWAN settings SWAN-North Sea

Maximum wind drag cdcap=0.00275 at 30 m/s

Directional resolution 45 bins * 8°

Frequency resolution 0.03 – 0.6 Hz.

Wind drag Hwang (2011), default for ST6

Wave generation ST6; GEN3 ST6 5.6E-6 17.5E-5 VECTAU U10P 31. AGROW

Whitecapping ST6; SSWELL

Quadruplets QUAD iquad=3

Triads -

Bottom friction JONSWAP; cfjon=0.038

Breaking Battjes, Jansen (1978), alfa=1.0, gamma=0.73

Numerics First order upwind scheme; BSBT

Convergence NUM ACCUR 0.02 0.02 0.02 98 NONSTAT mxitns=20

Bathymetry swan-ns-j22_6-v1a_adjust

Obstacles -

Time step 1 hr

3.2.5 Computational procedure
SWAN was run sequentially through time with the 50 ensemble members in parallel, forced by
the TIGGE winds. The forecast was done daily for analysis date T00:00:00 and forecasted 72

12 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

hours ahead, because the TIGGE wind ensemble include a 72 hour forecast1. After the first
day of the forecast, a restart file was written that was used as restart for the next analysis. Note
that the unformatted restart (binary format) was used to limit space uptake. For example, for
the year 2022, for 365 analysis dates each ensemble member run with a 3-day forecast.

3.2.6 Model output
Hourly output was written at 20 output locations in ‘tab’ timeseries files, see Figure 3.1 for the
output locations. Netcdf files with spatial fields were written every 6 hours to limited space
uptake. Table 3.3 shows the variables that were written as output by SWAN.

Table 3.3 Output variables

Points every 1H Map every 6H

TIME

XP XP

YP YP

HSIG HSIG

HSWELL HSWELL

TMM10 TMM10

TPS TPS

DIR DIR

FDIR FDIR

DSPR DSPR

WATLEV WATLEV

VEL VEL

WIND WIND

——————————————
1 A longer prediction horizon was not chosen, as the prediction horizon of the SWAN North Sea models is only 48
hours.

13 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 3.1 Output locations points

3.2.7 HPC (Snellius) workflow and tools / Code
The ensemble runs were executed on high-performance computer Snellius (SURF
https://www.surf.nl/en/services/snellius-the-national-supercomputer). A toolbox (GitHub:
swanprobpy) was developed in Python to download input data from MATROOS
(SwanToolbox), generate all SWAN configuration files for all ensemble members and all
analysis dates. A bash script (jobfile) submits the forecasts for all ensemble members in parallel
and sequentially in time. The routine also makes sure that the next forecast uses the output of
the previous forecast as a restart. After the restart files are used, the routine removes them to
limit the storage. The workflow for setting-up the model configuration structure (and some
processing) can be followed by using the notebooks, as available in GitHub. We used naming
conventions for the directory structure for input and output that need to be followed, as
explained in the notebooks.

In addition, postprocessing scripts were developed to generate timeseries and ensemble
verification diagrams like Talagrand/rank histograms and exceedance histograms for the wind
speed and wave variables. These are used to analyse how well the Ensemble Prediction
System (EPS) grasps the uncertainty in the system.

https://www.surf.nl/en/services/snellius-the-national-supercomputer

14 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

3.2.8 Computational aspects on Snellius

Project space
The project storage space only for the SWAN model input and ensemble output for one full
year was 1.3TB, given that the restart files are removed after they are used in the previous
forecast and if they have the unformatted file extension. Output point files were written hourly,
while map files were written every six hours. Note that this is excluding the storage needed for
training the surrogate model, which approximately requires double the storage of SWAN data.

Type Project Space

Full year 1.3 TB

Months of storms (7x) 1 TB

Tests (scaling) 0.25 TB

Total SWAN ~ 2.6 TB

Scaling tests
In order to take the most efficient approach in running the ensemble in parallel on Snellius, we
conducted scaling tests for one month. The scaling is approximately linear at first, but efficiency
decreases due to several reasons (e.g. overhead communication). The most efficient choice
within the available SBUs (total cores x time), was using 10 nodes and 37 cores per task
(ensemble member).

Setup Job wall clock time Selected

Jan2022_2nodes_7cores 01:26:05

Jan2022_5nodes_19cores 00:58:31

Jan2022_10nodes_37cores 00:29:05 x

Jan2022_12nodes_46cores 00:34:41

Jan2022_17nodes_64cores 00:25:48

Computation
We ran 50 ensemble members on 10 Genoa nodes, with 192 cores on each node. We assigned
37 cores per task (SWAN ensemble member). Job wall clock time for one full year was
approximately 80 Hours (3.3 days). Because the sbatch routine loops through each ensemble
member per forecast, we encountered job step limit issues. Therefore, each run had to be
restarted after two months. The amount of SBU’s required for the full year was approximately
160.000. To have some extra room for tests we requested 300.000 SBUs.

3.3 Ensemble Verification
We have a reasonable representation of uncertainty by using TIGGE wind dataset, but not
optimal. Figure 3.2 shows an example of the ensembles (light blue), the ensemble mean (dark
blue) and the measurements (black dots) for the wind and wave height during storm Corrie
(Jan/Feb 2022). The measurements are not always within the ensemble range for both wind
and waves. We observe that the ensemble spread grows with forecast time and that the
observed values start to fall within the ensemble spread. Not primarily because the uncertainty
in the wind is accurately modelled, but because the ensemble forecast gets more diffuse
through time. Thus, it is likely that errors in the wind field dominate after a few days lead time,
while other sources of uncertainty dominate the errors on short lead time. Additional
comparisons can be found in Appendix A.

15 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 3.2 Timeseries at L91 for U10 and Hs. Hs has been computed with the SWAN model.

To give an indication of how reliable the ensemble forecast is compared to observed data, rank
diagrams (also called Talagrand diagrams) have been made. A rank diagram is a type of
histogram. However, the bins are based on a ranked list of forecast values. Subsequently,
observations are placed in the appropriate bin. In the ideal situation, the rank diagram should
have a uniform distribution as each bin represents equally likely scenarios.

Figure 3.3 shows the Talagrand and exceedance diagram for significant wave height for the
station L91, for which time series are shown in Figure 3.2. Note that the ensemble verification
is performed based on 72-hours lead time. The rank diagrams based on the ECMWF ensemble
wind and wave data, see Figure 3.3 and 3.4, have a u-shape. The u-shape suggests that the
ensemble spread is too small. At some stations the asymmetry points to a model bias. This is
indicated by the asymmetry of rank 0 and rank 50, also visible in Figure 3.2. However, at the
same time, the exceedance diagrams, see for example Figure 3.3, show that most of the
observations are still close to the ensemble.

The mean Talagrand diagram over stations that have matched observations are shown in
Figure 3.5 for significant wave height. The mean is taken over stations: North Cormorant, A122,
Q11, L96, Ijmuiden munitiestort and Europlatform. It can be observed that most observations
are larger than the largest ensemble member, indicated by bin of rank 50. SWAN tends to
underestimate the significant wave height more than overestimate. A similar pattern can be
observed for wind speed in Figure 3.6, although the bias is less strong, indicated by the more
uniform u-shaped bins. For wind speed the mean over stations: L91, Q11, Platform k13,
Platform F3 and North Cormorant were taken, based on observation availability.

Nonetheless, looking at the Talagrand diagrams for the wind we can conclude that our wave
ensemble is not optimal at least partly because of the limitations of the TIGGE-ECMWF wind
ensemble. For example, because of the coarse spatial and temporal resolution of the wind
ensemble. Another important cause of the non-optimal ensemble is that we are only
considering the wind forcing as a source of uncertainty, while in reality there are several more
sources (e.g. model parameters, boundary conditions). Note that we evaluated the ensemble
for 3-day lead time forecasts. Errors will become more dominant with increasing lead time. To
get a more detailed overview, ensemble verification can be done for different lead times in the
future (e.g. forecast for 1 day, 2 days and 3 days ahead).

16 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 3.3 Talagrand and exceedance histogram for significant wave height at station L91 for all members.

Exceedence in meter

17 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 3.4 Talagrand and exceedance histogram for U10 wind speed at station L91 for all members.

18 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 3.5 Mean Talagrand and exceedance histogram for significant wave height Hs over all stations.

19 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 3.6 Mean Talagrand and exceedance histogram for U10 wind speed over all stations.

20 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

4 TurboSWAN surrogate model

4.1 Introduction
This chapter describes the TurboSWAN model, a fast neural network that is trained on a large
set of SWAN runs. In future, the goal is to use this TurboSWAN model to operationally perform
50 ensemble runs with wind ensemble input and apply the spread in results as confidence
interval on the one deterministic SWAN run.

4.2 Introduction machine learning model

4.2.1 Neural networks
Neural networks, or artificial neural networks, are inspired by the workings of biological
neurons. Neural networks consist of an input layer, where it takes multiple inputs, one or more
hidden layers and an output layer. Each layer is composed of nodes, or neurons, which are
connected to the nodes of the subsequent layer. Each node has an assigned weight and
threshold. The weight of a node determines the importance of that node in predicting the output,
while the threshold manages the activation of the node. If the output of a node is above the
threshold for that node, its output is sent to the next layer of the network.
Once an input layer is created, weights are assigned to each input in that layer. All inputs are
multiplied by their respective weight and then summed. Next, the output is passed through an
activation function, which gives the output of the layer. If this output exceeds the threshold, the
output is passed to the subsequent layer. For a node with a threshold c receiving n inputs we
have the following

where wi is the weight of input xi and f(x) is the activation function of the node. This function
is called the ReLU function and is commonly used in neural networks and can also be written
in the simpler form f(x) = max(0,x). Two other common activation functions are the linear
activation function f(x) = x, though this is usually only used in the final layer, and the sigmoid

activation function . The last layer in the network, the output layer, combines the
outputs of the previous hidden layer, again using an activation function, to obtain a function
which maps the input space into the output space. This is done by minimizing a cost or loss
function, like for example the mean squared error. The more hidden layers the network has
and the bigger the size of these layers, the better it is able to learn complex relations.
In general, there are two types of learning, namely supervised learning and unsupervised
learning. If the cost function minimized during training is a function of the output of the network
and the real output, it is called supervised learning. If the cost function is not dependent on the
real output, it is called unsupervised learning.
The training process of a network, in this case supervised, works as follows. First, the weights
are initialized. The weights are then slightly adjusted in each step to get closer to the desired
output. For each input, the activations are propagated through the network, where the
activation state is computed for each unit in the network, including the output. At the output
layer, the output from the network is then compared with the desired output and the cost is
computed, using the cost function. Then the partial derivative of the cost with respect to the
activation is computed to check how much the cost can be reduced with a slight change in the
activation. This partial derivative is then propagated back through the network to the activations

21 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

of the previous layer. As the activations are dependent on the weights, since f(x) = f(wx), the
derivative of the cost with respect to the weights can be computed using the chain rule. With
the help of this derivative, the weights can be adjusted in the direction that reduces the cost.
This also shows why it is preferred for the activation function to have a non-zero derivative, as
otherwise the derivative would vanish, causing troubles for the weight adjustments.

4.2.2 Convolutional Neural Networks
Convolutional Neural Networks, or CNN’s in short, are a special type of artificial neural
networks that excel in pattern recognition. Its main advantage over classic artificial neural
networks is that it greatly reduces the number of parameters, allowing the model to solve larger
problems. With this property, it is mainly used for image problems. The network typically takes
an image with shape H × W × D as input. This input image is then traversed by a filter, or
kernel, with a shape of f × f × D, performing matrix multiplications with the part of the image the
filter highlights at the time. The outcome of this multiplication is summed and then projected
onto the feature map, which is passed to the next layer.

Figure 4.1: The operation of a 3×3×1 kernel on a 8×8×1 input image (Cornelisse n.d.).

This can be seen in Figure 4.1, where we have an image of shape 8×8×1 and a kernel of size
3×3×1. In this case, the kernel is at the top left where it performs a matrix multiplication with
the highlighted part of the image. The outcome of this action, which is a vector, is then summed
to get a scalar value, which is then projected onto the feature map. The filter starts at the top
left corner of the image and moves over the image to the right with steps equal to the so-called
stride value until it reaches the boundary of the image. After it reaches the boundary of the
image it starts at the left of the image again and moves down with a stride value, which is
typically the same stride value. It then moves to the right again and repeats this process until
the entire image is traversed. After the last position of the filter, it will start at the left again, 1
below the original position (Albawi et al. 2017).

Figure 4.2: A kernel which traverses the image with a stride of 1.

Figure 4.2 shows how the filter traverses the image if it has a stride of 1. However, considering
that we have a 7×7 image with a 3×3 filter and a stride of 1, the output image will have a
reduced size of 5×5. This effect can also be seen in Figure 4.1, where the output of the first
filter is projected on position (1,1) instead of position (0,0). Generally, if we have an image of

22 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

size N × N and a filter with size F × F with stride S, the output image will be of shape O×O,

where .
Therefore, to allow the output image to retain its original shape, zero-padding is used on the
input image. With zero-padding, the input of size N × N will be increased to (N +2)×(N +2) and
the boundaries will be set to zero. This will not only make sure the images do not decrease in
size, it also helps to prevent information loss at the boundaries.

Figure 4.3: Zero-padding on an image of size 7×7 (Albawi et al. 2017).

Lastly, we would like to consider pooling layers. Pooling layers down-sample the input image,
which reduces the complexity of the image for subsequent layers. The advantage of this is that
the model will become easier to train as it reduces the number of parameters that need to be
trained. There are two types of pooling, namely max-pooling, which is the most common, and
average-pooling. In both pooling types, the input image is partitioned into smaller rectangles.
If max-pooling is applied, the maximum of each sub-rectangle is returned, while for average-
pooling the average is returned. The most common size for the sub-regions is 2×2 with a stride
of 2. This means that both the width and the height of the image get halved in the pooling-layer,
which can also be seen in Figure 4.4 where max-pooling is used.

Figure 4.4: Max-pooling with a size of 2×2 and a stride of 2 (Albawi et al. 2017).

4.3 Training, validation and testing data
TurboSWAN was trained on the SWAN data with time steps of 6 hours. We used this time step
of 6 hours to make sure the input fields are different enough to provide new information
between the time steps, while still showing a temporal correlation. We chose a combination of
a selection of input fields and boundary conditions for SWAN as input data for TurboSWAN.
For the input fields, we used
• xwnd: x-component of wind velocity [m/s]
• ywnd: y-component of wind velocity [m/s]
• ssh: sea surface height [m+MSL]

23 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

• xcur: x-component of current velocity [m/s]
• ycur: y-component of current velocity [m/s]

These fields are of the ’current’ time step, in other words, they refer to the same time step as
the output fields we are interested in. Additionally, we included the fields of the time step before
the current time step as well (6 hours earlier), to provide additional information to the network.
The fields of the SWAN computations are of shape (481×421), which means that after
concatenating both time steps, we feed the network input fields of shape (481×421×2).

We combined all five variables into one input for the model, leading to a shape of (481×421×10)
for the field input to TurboSWAN. For the boundary conditions, we included the boundary
conditions of the current time step for the variables hs,hswe and tmm10. We had 22 boundary
values for all three variables and concatenated them together, resulting in a shape of (22×3)
for our second input.
For the output fields we chose:
• hs (significant wave height),
• theta0 (wave direction),
• tmm10 (spectral period Tm-1,0),
• tps (smoothed peak period),
• hswe (swell wave height or HE10).

Due to the periodic nature of theta0, we decomposed the field into its x and y component, using
the following transformation:

where theta0x and theta0y are the x- and y-components of theta0 respectively. We performed
this transformations to deal with the limitations of neural networks in dealing with periodicity.
Due to the periodicity, we have 0 ≡ 2π for theta0. Let us assume that theta0 = 0 at a point in
the data and that the network overpredicts slightly. Then we want to have an equal loss for this
over prediction at 0 as for an overprediction of the same amount at 2π. However, if we do not
decompose the angle, then an overprediction at 2π would result in a higher loss, since it is
being compared to 0. We also concatenated all output variables, leading to an output shape of
(481×421×6).
The dataset consists of 25 ensembles of the year 2022 supplemented with 25 ensembles of
the seven storms to add more extreme cases to the training data, both with a time step of 6
hours. Combined, this leads to a dataset of about 175,000 samples, of which about one third
is storm data. We split this dataset randomly into training data and validation data, with 70%
training data and 30% validation data. For testing, that is all plots and statistics produced to
test the trained model, we used the full year 2022 and all storms combined of one of the
ensembles not used during training and not present in the validation dataset.
In Figure 4.5 we show the distribution of the distribution of the input and output variables in the
test dataset for 2022 and all storms combined. We plotted a scatter plot for pairs of input
variables against each other in addition to pairs of output variables against each other. This is
done for all time steps in 2022 and the storms and for all points in the fields. We can see a
fairly uniform spread for the wind variables, where we do not introduce a bias in the network
by having a skewed representation for xwnd and ywnd. Also for ssh, we do not have a big
noticeable bias, with an even spread for both the positive values and the negative values. For
the current we again see that the values are centered around 0. However, we do notice a linear
line for both xcur and ycur negative, which indicates that there is an error in the input data.
Though, the error is not too significant, since this is only a small percentage of the data. The

24 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

scatter plots for the output again show interesting insights. The wave height hs is shown to
have a linear correlation with the swell hswe, which is to be expected. We have a fairly uniform
spread that covers most of the wave directions. For tmm10, we have a few unrealistic outliers
with values near 50. Lastly, the plot for the wave height against the period shows expected
behaviour, where we do not have low periods for higher wave heights.

(a) Input

(b) Output

Figure 4.5 The distribution of input variables against each other and of output variables against each other in
the test dataset for 2022 and all storms combined.

We normalized all input variables and output variables to the range of [0, 1] for the training of
the network. Doing so makes sure that variables with high values, like theta0, do not have a
higher impact on the loss than variables with comparatively lower values, like hs.

25 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

4.4 TurboSWAN
The neural network for the TurboSWAN model consists of an encoder part and a decoder part.
Note that here the encoder and the decoder refer to the first half and second half of the network
respectively. The encoder learns the patterns from the different input parameters and maps
them to a latent space. The decoder will then learn to construct the output parameter maps
from this latent space. In addition to the encoder-decoder structure, the network also has skip
connections between the encoder and the decoder. When a neural network is very deep and
has a lot of layers, as is the case with the network for TurboSWAN, information learnt in the
earlier layers of the network can get lost due to vanishing gradients. To try to retain some of
this information, we included these so-called skip connections between the different layers in
the encoder and in the decoder. This type of network structure with skip connections is typically
called a U-net, due to its shape, and has proven to be successful in retaining the information
of low- and high-level features present in the data (Ronneberger et al. 2015).
To further prevent information loss due to the depth of the network, we also used residual
blocks in the network. Residual blocks were introduced in the ResNet model to address the
issue of vanishing gradients in deep neural networks (He et al. 2015). In Figure 4.6 we show
the concept of residual blocks, as well as the structure of the residual blocks that we used for
TurboSWAN. In our case, the blocks consist of two convolutional layers with w filters per layer.
Formally, if we assume that we are interested in learning the function H(x), then the block will
try to learn the mapping F(x) = H(x)−x. This means that we are now trying to learn F(x)+x
instead.

The idea behind this is that, assuming that we have a shallower network with fewer layers, the
deeper network would have to have multiple identity mappings to end up with the same result.
To end up with the identity mapping from multiple layers turns out to be a difficult task. So
instead, by formulating the problem like this, the block or part of the network needs to learn
F(x) = 0 to end up with an identity mapping. This is a much easier task for the network, since it
only needs to drive the weights to 0.

The network, which we present in Figure 4.7, consists of a combination of residual blocks,
downsampling blocks, and upsampling blocks. In addition, we use multiple dense layers to
combine the image input with the input from the boundary conditions. The downsampling
blocks, shown in Figure 4.8, use three residual blocks followed by a single convolutional layer
with a stride of 2. This convolutional layer serves the same purpose as the typical max-pooling
layer, namely downsizing the image by reducing both dimensions by halve. However, where a
max-pooling achieves this result by choosing the maximum number in small blocks of (2×2)
cells, a convolutional layer with a stride of 2 does not necessarily use the maximum, but learns
down-scaling instead. This approach can lead to better downsampling, since the network now
tries to learn this process, though it will also come with a higher computational cost, since we
introduce more learnable weights into the network. After each residual block, we have a skip
connection to an upsampling block at the same level in the network (Figure 4.7). The
upsampling block itself, which we show in Figure 4.9, has a structure similar to that of the
downsampling blocks. It again uses three residual blocks, though these residual blocks are
made of two deconvolutional layers instead of two normal convolutional layers. Likewise, the
upsampling is done using a deconvolutional layer with a stride of 2 instead of a typical
upsampling layer. The skip connections from the downsampling block are connected and
concatenated to the block output and the layer output from the upsampling layer.
So far, we have been focusing on how we dealt with the image input variables and the image
output variables. However, since the boundary conditions are not two-dimensional in shape,
this approach cannot be used for them. Instead, we combine the boundary conditions for the
three different variables into one long 1-dimensional array. Then, this array is passed through
four dense layers. To attach it to the rest of the network, we first flatten the final layer of the
encoder. The flattened layer is then concatenated to the output of the last dense layer for the

26 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

boundary conditions. This concatenated result will then pass through two more dense layers
after which it is reshaped to a 2-dimensional image again, of the same shape as the image
before flattening. After the reshaping, the output will go through the encoder. We show a
schematic overview of the middle part in Figure 4.10.
Lastly, we mention the use of a zero padding layer and the use of a cropping layer at the start
of the encoder and at the end of the decoder, respectively. Since the input and output for SWAN
is of shape (481×421), it is not divisible by 2. This means that we are not able to directly halve
the dimensions of the images for downsampling. To solve this issue, we used a zero padding
layer, adding zeros to the boundaries, leading to a new shape of (512×512). We choose the
specific value of 512 for the reason that it is a power of two, making subsequent downsampling
operations possible as well. To get back to the original dimensions of the output, we crop the
image in the cropping layer. We would like to note that we used batch normalization after every
layer in the network, to help prevent the network from overfitting. The full network contains a
total of more than 442 million trainable parameters.

Figure 4.6: The structure of the residual blocks used in the TurboSWAN network. The block consists of two

convolutional layers. The input to these layers is added to the output of these layers.

Figure 4.7: The architecture of the TurboSWAN network. The network uses multiple downsampling and

upsampling blocks, combined with residual blocks. In the middle of the network the boundary
conditions are added to the flattened image input.

w
conv1

w
conv2

+

+ +

27 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.8: The structure of the downsampling blocks used in the TurboSWAN network. The block consists of

three residual blocks and has a convolutional layer with stride 2 at the end. After each residual
block, there is a skip connection to an upsampling block further down the network.

Figure 4.9: The structure of the upsampling blocks used in the TurboSWAN network. The block consists of

three residual blocks and has a deconvolutional layer with stride 2 at the start. Before each
residual block, the output of a residual block in a downsampling block earlier up the network.

28 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.10: The structure of the concatenation of the boundary conditions to the image input at the middle

of the TurboSWAN network. The boundary conditions pass through four dense layers before
being concatenated to the flattened image data.

4.4.1 Network architecture choice
We chose a U-net based architecture with residual blocks for its proven capabilities in pattern
recognition and reduction of information loss for deep networks. Another option for the
architecture is to use a convolutional LSTM Shi et al. 2015.
Convolutional LSTMs are often used in problems with a temporal component in addition to a
spatial component. Since we do have a temporal component in the input, it might be suitable
for our problem. However, our problem does not necessarily predict the next time step. We go
from a set of input fields, containing two timesteps, to a set of different output fields. So, we
think it is more important for the network to properly learn the mapping from the input fields to
the output fields, which is why we opted to not use a convolutional LSTM. We also considered
to separate the different input fields as well as the output fields, instead of combining them all
into one input and one output. Our choice for the latter was for the sake of keeping the model
simpler and trying to reduce computational and memory requirements. Moreover, we did a
short analysis on the number of layers and number of filters per layer, which lead to our current
architecture, which performed best in the analysis. Additionally, this analysis led to a learning
rate of 1e-4. For the loss function, we chose to use the mean squared error (MSE), which
punished large deviations from the truth. We also tested the use of the root mean squared
error, which has a lower punishment for large deviations, but this leads to similar results. Lastly,
the network used the ReLU activation function for the hidden layers and a linear activation
function for the output layer.

4.5 Comparison to SWAN results
After training the network for 47 epochs, which means the network went through the entire
training and validation dataset 47 times, the network seems to have converged. Figure 4.11
shows the progress of the loss for both the training data and the validation data during training.
In Figure 4.11, we can see that both losses already converged after 20 epochs, after which
they barely decrease any further. In fact, the validation loss slightly increases again after epoch
30, indicating that the network is overfitting. The training loss reaches a final value of MSE ≈
0.0063, whereas the validation loss has a value of MSE ≈ 0.024 after the final epoch. Note that
since the output contains all output variables, the unit of the overall MSE is unit-less.

29 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.11: The training and validation loss of the network during training

To get a better grasp of the performance of TurboSWAN, we tested it on the test dataset.
Figure 4.12 shows the RMSE taken over the whole year and the seven storms of the test
dataset for the variable significant wave height (hs), swell wave height (hswe) and spectral
wave period (tmm10). We also show a figure (Figure 4.14) of the mean values of these
variables across the whole year, to get a better indication on how TurboSWAN performs. From
Figure 4.12 we observe that for all three variables, TurboSWAN performs best in the southern
North Sea region. Both hs and hswe have an error of about 0.5 m, though the error for hs is
slightly lower. tmm10 has an error of approximately 1.5 s. All three variables also clearly have
higher errors along the coastal areas as well as near the northern boundaries of the North Sea.
This is especially apparent for tmm10. If we look at the mean errors in Figure 4.13, we see that
TurboSWAN primarily under predicts for hs and hswe between Great-Britain and Norway. This
is contrary to the south of Ireland, where we see on average a slight over prediction. For tmm10
we again have slight under prediction between Great-Britain and Norway, though not as large
as for the other two variables. The mean errors also reveal that TurboSWAN has a substantial
under prediction along most coastal areas with the exception of the area north of the
Netherlands, where it heavily over predicts.

Figure 4.12: The RMSE taken over the whole test dataset (2022 and storms) for hs, hswe and

tmm10.Wave heights in meters, wave period in seconds.

30 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.13: The mean error taken over the whole test dataset (2022 and storms) for hs, hswe and tmm10.

Wave heights in meters, wave period in seconds.

Figure 4.14: The mean value for the whole test dataset (2022 and storms) for hs, hswe and tmm10. Wave

heights in meters, wave period in seconds.

Though these figures give a nice overview of the performance of TurboSWAN in the spatial
domain, they fail to show its performance in the temporal domain. We assessed this
performance by looking at the time series for the whole year at multiple locations across the
North Sea. For this report, we chose to focus on the locations of Europlatform, K13 and North
Comorant. If we look at the timeseries in figures Figure 4.15 - Figure 4.17, we see that at all
three locations, TurboSWAN is able to trace SWAN quite well for both hs and tmm10. Also for
hswe, TurboSWAN mimics SWAN well at K13. At North Cormorant, we have a clear
overprediction during the spring and summer period, though we can also see that the pattern
is still very similar. At Europlatform, we again have a clear over prediction, but here it’s apparent
throughout the year. Moreover, apart from some peaks, TurboSWAN has a different pattern.

31 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.15: The timeseries [year-month] of hs, tmm10 and hswe at Europlatform for TurboSWAN

(abusively indicated as surroSWAN) and SWAN.

Figure 4.16: The timeseries [year-month] of hs, tmm10 and hswe at North Cormorant for TurboSWAN

(abusively indicated as surroSWAN) and SWAN.

32 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.17: The timeseries [year-month] of hs, tmm10 and hswe at K13 for TurboSWAN (abusively

indicated as surroSWAN) and SWAN.

To get more detail, we also considered the timeseries at the same locations for the brief period
of the storm in January 2018 (timestep for both TurboSWAN and SWAN is 6 hours). We present
these timeseries in figures Figure 4.18 - Figure 4.20. They show fairly good results at North
Cormorant, though there are some clear under predictions and over predictions. At the other
two locations, however, the results are less promising. While tmm10 still has similar values, hs
and hswe have clear differences. Especially at Europlatform, we see a very big over prediction
by TurboSWAN for the whole month in addition to a spiky pattern in TurboSWAN. Note that
there is no link at all between the various parameters (hs, tmm10, hswell) in TurboSWAN
whereas there is in SWAN and reality.

Figure 4.18: The timeseries of hs, tmm10 and hswe at the Europlatform for TurboSWAN and SWAN for the

storm of January 2018.

33 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Figure 4.19: The timeseries of the hs, tmm10 and hswe at North Cormorant for TurboSWAN and SWAN for

the storm of January 2018.

Figure 4.20: The timeseries of hs, tmm10 and hswe at K13 for TurboSWAN and SWAN for the storm of

January 2018.

4.5.1 Computational time
As the main advantage of a neural network compared to SWAN is its faster computational time,
we also had a look at how long it would take to compute the output fields 48 hours in advance
for 50 ensembles. In TurboSWAN we have time steps of 6 hours, which means that we will
have to compute 8 time steps for the results after 48 hours. Assuming the input is already given
in advance, it takes approximately 25ms to compute one time step on an Apple M1 Max GPU.
So, for the 8 time steps and 50 ensembles, it would take about 10 seconds on this GPU or a
similar GPU, apart from IO. On the Apple M1 Max CPU, it takes approximately 1s to compute
one time step, resulting in a total time of about 6 minutes and 40 seconds, again excluding IO.

34 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

4.6 Recommendations for further improvement
Though the current TurboSWAN model is already able to predict the SWAN values quite well,
there are still various improvements that we want to explore to improve accuracy.

Firstly, we think that a different choice for the input can improve the results. Instead of
combining all input variables into one, keeping them separated until deeper into the network
can help the network learn the precise impact of each variable better. The same holds for the
output variables.
To try to keep the memory and computational requirements during training lower, we also think
it is a good idea to investigate whether the addition of the previous time step in the input leads
to an actual increase in performance. In this first experiment it was included with the idea that
it can give additional information to the network, to get better results. However, if this
improvement is only minor, it might be better to not include them, such that the memory and
computational requirements for the training can be distributed somewhere with a higher impact
on the performance. Another way to reduce memory and computational requirements is to
change the approach a bit. We could use a coarser grid for SWAN as input for the network,
while still resulting in a fast method of obtaining ensemble forecasts. This might be an easier
problem to learn, leading to more accurate results at the expense of a lower resolution.

Secondly, the number of layers in the network can be optimized as well. Although we did a
small analysis on different hyper parameters for the network, we did this analysis on an earlier
version of the dataset. In the future, we want to do another, more thorough, analysis on the
new dataset to find a better choice of hyper parameters. Lastly, the current version of
TurboSWAN used convolutional layers for down- and upsampling. As we stated earlier, this
approach has the advantage of being able to learn the down- and upsampling process.
However, this can also lead to less smooth results, which we saw in the predictions. Therefore,
we would like to do a test where maxpooling is used for downsampling instead of a
convolutional layer to test if this is indeed the case for our problem.

It is suggested to reconsider the way of splitting the dataset in training and validation since
ensemble members of the same moments may be too much alike to have them in both sets.

35 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

5 Conclusions and outlook

5.1 Conclusions
In summary, we report on the progress of a method to provide uncertainty bands for the
operational wave forecasts in the North Sea. The method has two components. The first is
modelling the uncertainty through an ensemble of wind fields and understanding the validity of
this. The second part is keeping computations manageable by training a faster approximate AI
wave model.

Via the TIGGE project, ECMWF wind field ensemble (historic) forecasts are available which
we used as input for circa 15 months of SWAN simulations with the SWAN-DCSM model. The
SWAN input and map output offered a great training set for the TurboSWAN neural
network.The uncertainty was assumed to be dominated by errors in the wind forcing. This was
true in part. At longer lead times the spread captured most of the observations. However, at
shorter lead times (less than 2 days) the errors are often underpredicted. This suggests other
sources of uncertainty dominate at shorter lead times (e.g. wave boundary conditions, wave
parameterization).

The AI approximate wave model TurboSWAN is very fast and captures the dominant dynamics.
The TurboSWAN surrogate model is fast: 25ms to compute one time step. For the 8 time steps
and 50 ensembles, it would take about 10 seconds on GPU (and approximately a factor 40
more on CPU). However, during storms and some other cases, errors at the validation stations
are still too large for an application. Over the entire domain, the root-mean-square-error of
TurboSWAN – compared to the SWAN results – is roughly 0.5 m for wave height and swell
wave height. The wave period Tm-1,0 has an error of approximately 1.5 s. All three variables
clearly have higher errors along the coastal areas as well as near the northern boundaries of
the North Sea.

We consider both prototypes (modelling the uncertainty through an ensemble of wind fields
and the use of a faster approximate AI wave model) a good starting point for further
developments. There are many ways in which both components could be improved. For the
modelling uncertainty in the first place, other sources of uncertainty could be considered that
are dominant on shorter lead times. For the AI model TurboSWAN we could experiment with
different inputs, tune hyperparameters and change the network architecture.

The methodology developed here is not limited to the North Sea and can in principle be
retrained anywhere in the world, although other issues might arise with different system
dynamics.

5.2 Outlook for 2025
The representation of uncertainty in the ensemble wave model can be improved in the future
by understanding the underpredicted spread on shorter lead times. This could be done by
evaluating for different lead times and including other sources of uncertainty (e.g. WAM wave
ensemble at the boundary).

To improve AI wave model TurboSWAN, several directions are worthwhile considering. Testing
variations of the input and output, tuning hyperparameters and testing variations of the net
architecture are deemed most promising.

36 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Once errors of TurboSWAN are within acceptable range for users (a few order smaller than
ensemble spread), a full prototype can be developed and tested for operational use. The aim
is to have the full prototype ready at the end of 2025, with more testing for operational use in
2026 if the prototype is deemed acceptable for its purpose. If all goes well, the method could
be implemented for operational use in 2027.

37 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

Literature

Battjes, J.A. and J.P.F.M. Janssen (1978). Energy loss and set-up due to breaking of random
waves, Proc. 16th Int. Conf. Coastal Engineering, ASCE, 569-587

Deltares (2023a). Actualization and validation of SWAN-North Sea and SWAN-Kuststrook
models. Deltares report 11209278-005-ZKS-0005, final version, 18-08-2023.

Deltares (2023b). Spectral wave model comparison: A validation of Deltares spectral wave
model. Deltares report 11209194-007-ZKS-0001, final version, 02-05-2023

Deltares (2024a). Hindcast SWAN-Markermeer. Ref 11210333-009-ZWS-0003 dd 4 Okt 2024.

Deltares (2024b). Hindcast SWAN-IJsselmeer inclusief IJssel-Vechtdelta. Ref 11210333-009-
ZWS-0003 dd 21 Nov 2024.

Hwang, P.A., 2011: A Note on the Ocean Surface Roughness Spectrum. J. of Atmospheric
and Oceanic Techn., Vol. 28, 436-443.

Van Ooijen (2023). Ensemble Forecasts for the SWAN model using Multilevel Monte Carlo
techniques. TU Delft Master thesis, 14-11-2023.

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi (2017). “Understanding of a
convolutional neural network”. In: 2017 International Conference on Engineering and
Technology (ICET), pp. 1–6. DOI: 10.1109/ICEngTechnol.2017.8308186.

Cornelisse, Daphne (n.d.). An intuitive guide to Convolutional Neural Networks.
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neuralnetworks-
260c2de0a050/.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). Deep Residual Learning
for Image Recognition. arXiv: 1512.03385 [cs.CV]. URL: https://arxiv.org/abs/1512.03385.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). U-Net: Convolutional Networks
for Biomedical Image Segmentation. arXiv: 1505.04597 [cs.CV]. URL:
https://arxiv.org/abs/1505.04597.

Shi, Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo (2015). “Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting”. In: CoRR abs/1506.04214. arXiv:
1506.04214. URL: http://arxiv.org/abs/1506.04214.

https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597

38 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

A Ensemble validation

North Cormorant wave height and wind speed ensemble members. Note that in the red
shape the spread in wave height is larger than the spread in wind, whereas the yellow shape
shows the opposite. The link between uncertainty in wind and wave is not always fixed.

Here, all ensembles drastically underestimate the observed wave height and swell wave
height at February 19th, 2022.

39 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

This example shows an overestimation in wind speed and at the same time an
underestimation in wave height at location Q11 at April 4th, 2022. The ensemble spread in the
wind is not the same.

40 of 40 CIP: Confidence intervals for SWAN wave forecasts
11210320-018-BGS-0001, 20 December 2024

	Summary
	1 Introduction
	1.1 General
	1.2 Objective
	1.3 Set up of the report

	2 Approach and data
	2.1 Approach
	2.2 Data
	2.3 Snellius

	3 SWAN wave computations
	3.1 Introduction wave computations
	3.2 SWAN-North Sea
	3.2.1 Period Selection
	3.2.2 SWAN Version
	3.2.3 Model input
	3.2.4 Model numerics and physics
	3.2.5 Computational procedure
	3.2.6 Model output
	3.2.7 HPC (Snellius) workflow and tools / Code
	3.2.8 Computational aspects on Snellius

	3.3 Ensemble Verification

	4 TurboSWAN surrogate model
	4.1 Introduction
	4.2 Introduction machine learning model
	4.2.1 Neural networks
	4.2.2 Convolutional Neural Networks

	4.3 Training, validation and testing data
	4.4 TurboSWAN
	4.4.1 Network architecture choice

	4.5 Comparison to SWAN results
	4.5.1 Computational time

	4.6 Recommendations for further improvement

	1
	5 Conclusions and outlook
	5.1 Conclusions
	5.2 Outlook for 2025

	Literature
	A Ensemble validation

