
 

 

 

 

 

A comparison of two models for 
consolidation with regard to the 
potential impact on practice 

 

 

 

 



 

 

 

2 of 17  A comparison of two models for consolidation with regard to the potential impact on practice 

11210371-028-GEO-0002, 10 December 2024 

 

A comparison of two models for consolidation with regard to the potential impact on 

practice 

 

 

 

 

 

Author(s) 

Andre Koelewijn 

 

 

 

 

 

 

  



3 of 17  A comparison of two models for consolidation with regard to the potential impact on practice 

11210371-028-GEO-0002, 10 December 2024 

A comparison of two models for consolidation with regard to the potential impact on practice 

Client Rijkswaterstaat Water, Verkeer en Leefomgeving 

Contact Myron van Damme 

Reference Sito-PS KvK 2024 

Keywords Consolidation, porous media, Biot, volumetric strain, alternative formulation 

Document control 

Version 1.0 

Date 10-12-2024

Project nr. 11210371-028 

Document ID 11210371-028-GEO-0002 

Pages 17 

Classification 

Status Final 

Author(s) 

Andre Koelewijn 



 

 

 

4 of 17  A comparison of two models for consolidation with regard to the potential impact on practice 

11210371-028-GEO-0002, 10 December 2024 

Summary 

The response of water saturated porous media to hydrodynamic loads is an issue of practical 

relevance to many applications in civil engineering, including many situations at the transition 

between soil and water. In 1941 Biot published a method to calculate the development of 

pore pressures in a porous medium, which is now commonly used in the field of 

geomechanics. Recently, Van Damme and Den Ouden-Van der Horst (2023) published an 

alternative approach. This report describes a limited investigation of the practical implications 

of this new approach. 

 

By comparing the results of both models an indication of potential differences is obtained. 

The comparison was done for cases with various boundary conditions and assuming only 

compressible pore water. 

 

It is concluded that for the pore pressures the same solution is obtained by both models, yet 

the deformations may be different, up to a factor of (at least) three, with sometimes an overall 

different spatial distribution. Due to these differences it cannot be easily determined which of 

the two models generally resembles reality more closely. 

 

On the basis of this study, it may be inferred that there may be a considerable impact on the 

accuracy of calculations in various civil engineering applications, where dynamic loads have 

an important effect. Moreover, yet outside the scope of this study, the new model may impact 

the practice of undrained analyses for basically transient situations, like stability analyses of 

embankments or failure analyses of dike revetments. 

 

This would require a more widely scoped investigation, in which the implications of the 

approach by the new model can also be scrutinized, e.g. regarding the interpretation of 

laboratory and field tests.  

 

It is therefore recommended that further (fundamental) research is carried out, initially at an 

academic level, and that results of this research are disseminated into practice as soon as 

possible, either directly or in cooperation with applied research institutes. 
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1 Introduction 

The response of water saturated porous media to hydrodynamic loads is an issue of practical 

relevance to many applications in civil engineering, including many situations at the transition 

between soil and water.  

 

In 1941 Biot published a method to calculate the development of pore pressures in a porous 

medium, which is now commonly used in the field of geomechanics. Recently, Van Damme 

and Den Ouden-Van der Horst (2023) published an alternative approach, imposing different 

boundary conditions than Biot. Most notably, the effective stress principle of Terzaghi, stating 

that the effective stresses at the surface of porous medium are zero, is abandoned. The 

recent article indicates that this is an unnecessary assumption. 

 

After some debate, Rijkswaterstaat gave an assignment to Deltares, as part of the “Kennis 

voor Keringen”1 program, to investigate the practical implications of the new approach for the 

work of Rijkswaterstaat. 

 

Although the early debate had indicated that the key differences cannot be easily identified in 

general terms, the debate focussing on the governing equations was continued for a while, 

until it was decided to investigate the differences that result if various boundary conditions are 

calculated using reasonable material properties. 

 

The cases that are considered, including the results that are obtained, are shortly described 

in Chapter 2. In Chapter 3 these results are discussed in general, including the practical 

implications. A conclusion and recommendation are given in Chapter 4. 

 

—————————————— 
1 In English: Knowledge for (flood) defences. 
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2 Cases considered 

2.1 Introduction 

The investigation of the practical implications is focused on differences obtained with the well-

established model by Biot and the new model by Van Damme & Den Ouden-Van der Horst. 

While Van Damme & Den Ouden-Van der Horst (2023) do no give a direct comparison 

between both models, in her master thesis Klein (2024) investigated both models and 

compared them. As part of the work reported here, Klein made additional comparisons, 

included to this report in the Annexes A and B. These comparisons are described and 

discussed in the following sections. 

2.2 Thesis by Klein (2024) 

For a theoretical problem, Klein defines various boundary conditions and applies these to 

both models. For the pore pressures, the numerical results are essentially the same. This is 

not surprising as basically the same equation is solved. The volumetric strains and the 

displacements, however, differ a lot in magnitude between both models. Moreover, in some 

comparable cases the displacements are in an opposite direction and spatial distribution also 

differs. However, Klein writes “note that the values for the volumetric strain and 

displacements are very small and could be considered as zero which is the steady state of 

Biot’s model.” (Klein, 2024:53). 

 

A remark is made here regarding the optional assumption of incompressibility of water. This 

simplification is often made when applying Biot’s model, as well as in other fields of 

engineering like ‘fluid mechanics’ (cf. Van Damme & Den Ouden-Van der Horst, 2023:18). 

While Van Damme & Den Ouden-Van der Horst (2023) explore the implications of a truly 

incompressible fluid, i.e.  = 0, Klein sticks to physics and interprets ‘incompressible water’ as 

fully saturated water (Klein, 2024:22,25). Therefore, despite the title of her thesis, it only 

concerns cases of compressible pore water. 

 

Klein also applied a one-dimensional expression of the new model to two cases for which 

experimental data is available. Details are given in Klein (2024), here only the graphs are 

repeated. 

 

The first case concerns a vertical cylinder with a 1.8 m thick layer of (nearly) saturated sand 

covered by water, 0.2 m deep, with a cyclic water load on top. Both the density of the sand 

and the saturation degree have been varied in the experiments, as shown in Figure 2.1 and 

Figure 2.2, respectively. 
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Figure 2.1 Figure 10.3 from Klein (2024), showing the influence of various densities according to the new 

model. 

 
Figure 2.2 Figure 10.4 from Klein (2024), showing the influence of various degrees of saturation according to 

the new model. 

The degree to which the new model agrees with the measurements varies. Sometimes, a 

close agreement is found (e.g. loose sand and t = 153.75 s), more often differences are 

found. Yet, for such problems the agreement is generally not bad, considering the difficulties 

to obtain reliable parameter values for material properties, assumed to be constant in the 

model. Note that for this case all material properties were assumed to be constant over 

depth. This is unlikely to be correct. 

 

The second case concerns the pressures in a canal bed, generated by passing ships. Figure 

2.3 shows water pressures for four passages. 
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Figure 2.3 Figure 10.8 from Klein (2024), showing measured and calculated pressures at the bottom of a 

canal (P1), inside the sand-bentonite cover layer (P2) and below that layer in the sand (P3), 

during the passage of ships according to the new model. 

For most situations, the calculations with the new model agree well with the measurements. 

The largest differences are found for the first case (Figure 2.3a), where especially the peaks 

in the response of the soil are not reproduced well. Yet, the peaks in the second case (Figure 

2.3b) are followed closely. 

 

These experimental results were not compared by Klein with Biot’s model. 

2.3 First addition by Klein (Annex A) 

Upon a request from Deltares, Klein prepared an addition to her thesis, in which both models 

were compared for two additional cases. The report is included in Annex A.  

 

For one of the cases, a 1D calculation was possible for both models. The resulting effective 

stress, volumetric strain, water pressure and displacement are shown in Figure 2.4. Their 

derivatives with respect to the distance are shown in Figure 2.5. 
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Figure 2.4 Figure 4.3 from Annex A, showing a comparison between both models for a 1D situation. 

 
Figure 2.5 Figure 4.4 from Annex A, showing the derivatives of the previous figure with respect to the 

distance.  

The most striking difference concerns the effective stresses. The new model follows the 

imposed boundary conditions, while for Biot’s model the assumption regarding the effective 

stress being zero at the top, in accordance with Terzaghi’s principle, leads to a hard reset at 

the top (z=0), as can be seen in the top left graph in Figure 2.4. This influences the strain and 

displacements too. Regarding the pore pressures, the difference is limited. 

 

For the 2D calculations, both cases gave numerical results for both models. For the first case 

(section 5.1 in Annex A), results are largely similar for the pore pressure and the horizontal 

displacement. Yet, for the vertical displacement the values are larger for the new model and 

the spatial distribution is rather different compared to Biot’s model. As a consequence, the 

volumetric strain of the new model is also larger, about a factor of two. 

 

For the second case (section 5.2 in Annex A), the pore pressure and the horizontal 

displacement are comparable for both models. This also holds for the spatial distribution of 

the volumetric strain and the vertical displacement, yet here these two variables are about 

four times smaller for the new model than for Biot’s model. 
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2.4 Second addition by Klein (Annex B) 

Confusion about the meaning of the boundary conditions in the first report (Annex A) urged to 

make a second version, included in Annex B. 

 

Here, no 1D solution is presented. 

 

For both cases, the pore pressures are similar, as can be seen by comparing the lower left 

graph of Figure 3.1 with the corresponding graph in Figure 3.7 (case 1), and similarly for 

Figure 3.4 and Figure 3.10 (case 2). 

 

For the volumetric strain and the horizontal and vertical displacements, the corresponding 

graphs look similar, yet regarding the extreme values. 

 

• For case 1: 

– The volumetric strain is about three times larger with the new model than with Biot’s 

model. 

– The horizontal displacement is also about three times larger with the new model than 

with Biot’s model. 

– The vertical displacement is about three times smaller with the new model than with 

Biot’s model. 

• For case 2: 

– The volumetric strain is about three times larger with the new model than with Biot’s 

model. 

– The horizontal displacement according to the new model is about two-third of the 

value obtained with Biot’s model. 

– The vertical displacement is a bit more than two times smaller with the new model 

than with Biot’s model. 

 

In short, for both cases the deformations with the new model differ significantly from the 

deformations with Biot’s model, although the pore pressures are similar. 
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3 Discussion 

Both models give basically the same results for the pore pressures when the pore water is 

modelled as compressible. Small differences that occur in the numerical solutions are not 

significant and may be attributed to the numerical procedures that are applied. The 

implications of incompressible water ( = 0) have not been investigated by Klein (2024) and 

were also not investigated in this additional study. 

 

Larger differences are found regarding the displacements and the related volumetric strain. 

These differences are up to a factor of three (both ways), while the spatial distribution is 

usually similar, but not always. For practical applications, a factor of three regarding 

displacements and volumetric strain is typically of significant importance. Reliable cases with 

measurements of deformations have not (yet) been calculated with both models. 

 

It is clear that the models are different and produce different results regarding deformations. 

An question that easily pops up, is “Is the new model correct?”, as in: “Do the results by the 

model closely resemble reality?” However, this question can also be inverted: “Is Biot’s model 

correct?” For its primarily purpose, predicting the generation and dissipation of pore 

pressures, it is generally considered so, but in that regard both models perform equal. For 

deformations, sometimes good results are known with Biot’s model, while sometimes the 

accuracy is rather limited. 

 

In this regard, an analogy with Bishop’s model for slope stability (Bishop, 1955) comes into 

mind. Although in this model severe simplifications are assumed – only momentum 

equilibrium is considered, no equilibrium of vertical forces and no equilibrium of horizontal 

forces – the model tends to give reasonably well results. Curious about this success, in spite 

of the simplifications made, Spencer investigated how this is possible, as described in a 

publication twelve years after Bishop’s, to which any curious reader is referred (Spencer, 

1967). Similarly, Biot’s model could be quite correct, despite the simplifications that are 

made. 

 

Considering the different ways in which Biot on the one side and Van Damme & Den Ouden-

Van der Horst on the other side (and many years later!) derived their models, it can be 

speculated that the choices made by Biot resulted in a solution that gives a result that is 

roughly correct, not only with regard to the pore pressure but also with regard to the 

deformations, yet in some cases the solution may be more correct for the deformations than 

in other cases. 

 

However, this does not necessarily mean that the new model is undoubtedly correct. It may 

be correct, while yet for instance the derivation of stiffness parameters from laboratory tests 

may need to be reconsidered. E.g., the derivation of the shear modulus from the 

measurements made during a triaxial test may be influenced by the governing approach, i.e. 

Biot’s model, so for the new model a different value may be derived from the same test 

results. 

 

This will require additional research of a rather fundamental character, including e.g. a 

reconsideration of the interpretation of laboratory test results. This fits better at an academic 

level than at an applied research institute, and may take several years. Nevertheless, it is 

recommended that applied research institutes such as Deltares and TNO, to name a few 

Dutch examples, tap into that research to make it really applicable to practice, including the 

work of Rijkswaterstaat, as soon as possible.  
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4 Conclusion and recommendation 

After considering several cases with the new model by Van Damme & Den Ouden-Van der 

Horst (2023), it can be concluded that it gives the same solution for the pore pressure field as 

Biot (1941) when considering compressible pore water, yet the deformation field may be 

different, up to a factor of (at least) three, with sometimes an overall different spatial 

distribution. Due to these differences it cannot be easily determined which of the two models 

generally resembles reality more closely. 

 

On the basis of this study, it may be inferred that there may be a considerable impact on the 

accuracy of calculations in various civil engineering applications, where dynamic loads have 

an important effect. Moreover, yet outside the scope of this study, the new model may impact 

the practice of undrained analyses for basically transient situations, like stability analyses of 

embankments or failure analyses of dike revetments. 

 

This would require a more widely scoped investigation, in which the implications of the 

approach by the new model can also be scrutinized, e.g. regarding the interpretation of 

laboratory and field tests.  

 

It is therefore recommended that further (fundamental) research is carried out, initially at an 

academic level, and that results of this research are disseminated into practice as soon as 

possible, either directly or in cooperation with applied research institutes. 
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1
Introduction

This report is an extension on our Msc thesis last year [1]. In this report we will discribe two additional cases
of boundary conditions for the model of Biot and the new model by Van Damme & Den Ouden-Van der Horst
[2] for comparison between these two models in more detail.

In our literature report [3] and Msc thesis [1] we assumed that a positive pore water pressure is a pushing
force and a negative pore water pressure is a pulling force. In Figure 1.1, the hydraulic load is denoted by
the red arrows. Note that when the red arrow is pointing downwards there is a positive pressure on the soil
(pushing force). On the other hand, when the red arrow is pointing upwards there is a negative pressure on
the soil (pulling force) [1]. Furthermore, we have that the vorticity is zero everywhere on the domain.

Figure 1.1: A flat foreshore subjected to water waves [1].

In Chapter 2 we will give a short recap of the two-dimensional governing equations for Biot’s model in
Section 2.1 and for the new model in Section 2.2. In Section 2.1.2 and in Section 2.2.2 we will introduce
the two additional cases of boundary conditions for Biot’s model and the new model in two dimensions,
respectively. The first case is when the layer of soil is quicksand at the bottom. The second case is when the
layer of soil is dry at the bottom. In Section 2.3 we will describe the initial conditions. In Section 2.1.3 and
2.2.3 we find the stationary solutions for Biot’s model and the new model in one dimension, respectively. In
Chapter 3 we will discuss the numerical models in one dimension and show the one-dimensional numerical
results for Biot’s model and the new model using the two different sets of boundary conditions. In Chapter
5 we will discuss the two-dimensional numerical results for Biot’s model and the new model using the two
different sets of boundary conditions. Finally, in Chapter 6 we will make some conclusions.
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2
Models

In the next sections we will take a look into the two-dimensional governing equations of Biot’s model and the
new model of Van Damme & Den Ouden-Van der Horst. Note that we have vorticity ω := ∂ux

∂z − ∂uz
∂x is equal to

zero [1]. Furthermore, we will determine the stationary solutions to Biot’s model and the new model in one
dimension.

2.1. Biot’s model
In this section we will describe the governing equations of Biot’s model and give the corresponding stationary
model with its solution.

2.1.1. Governing equations (2D)
It is common to describe Biot’s model by three governing equations in two dimensions which are given by the
conservation of mass equation and the momentum balance equation [1]. The conservation of mass equation
in one dimension is given by

γw

Ks
pβ

∂P

∂t
−∇2P + γw

Ks

∂

∂t

(
∂ux

∂x
+ ∂uz

∂z

)
= 0. (2.1)

Respectively, the horizontal and vertical momentum balance equations are given by

−(λ+2µ)∇2ux + ∂P

∂x
= 0, (2.2)

−(λ+2µ)∇2uz + ∂P

∂z
= 0. (2.3)

To determine the volumetric strain we use the following equation

ϵ= ∂uz

∂z
. (2.4)

2.1.2. Boundary conditions (2D)
In this section we will discuss two sets of boundary conditions for the two-dimensional model of Biot. Both
sets differ one boundary condition at the bottom z =−nz . Most of the boundary conditions are from our Msc
thesis [1].

In Biot’s model it is common to set the total normal stress equal to the hydrodynamic load and to suppose
that the normal effective stress equals zero which results in the water pressure being equal to the hydrody-
namic load [3]. Then we set the one-dimensional boundary conditionsσ′

zz :=−(λ+2µ) ∂uz
∂z = 0 and P = Fzz (t )

at z = 0, where Fzz (t ) represents the normal stress and only depends on time and is chosen to be positive [1].
The shear stress is set equal to zero.

At the bottom, z = −nz , we assume that for case I the normal effective stress at the bottom equals zero
and for case II the pore water pressure equals zero, i.e. σ′

zz = 0 for case I or P = 0 for case II. Similarly, at x = 0

and x =−nx we get that ∂uz
∂x = 0, ∂ux

∂z = 0, ux = 0, ∂ϵvol
∂x = 0 and ∂P

∂x = 0 [1].
Then we get that for Biot’s model the sets of boundary conditions are given by

7



8 2. Models

B-I

for z = 0 :


−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

−λ ∂ux
∂x − (λ+2µ) ∂uz

∂z = 0

, (2.5)

for z =−nz :

{
∂ux
∂z = ∂P

∂z = 0

−λ ∂ux
∂x − (λ+2µ) ∂uz

∂z = 0
, (2.6)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = 0 , (2.7)

for z = 0 :


−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

−λ ∂ux
∂x − (λ+2µ) ∂uz

∂z = 0

, (2.8)

for z =−nz :

{
uz = ∂ux

∂z = 0

P = 0
, (2.9)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = 0 , (2.10)

We choose that [1]

Fzz (t ) = 0.5γw H sin

(
2π

t

T

)
, (2.11)

where γw [N/m3] the specific weight of the pore water, H [m] is the wave height and T [s] the wave period.
Note that when the normal effective stress at the bottom is zero at the bottom, there is no normal stress

acting on the soil particles and the total normal stress will only depend on the pore water pressure. For
example, this could happen when there is a layer of quicksand at the bottom of the computational domain.
On the other hand, when the the pore water pressure at the bottom is zero, then there is no normal stress
acting on the pore water particles and the total normal stress will only depend on the normal effective stress.
This could eventually happen if there is a layer of dry soil at the bottom of the computational domain.

2.1.3. Stationary model (1D)
When we assume that t =⇒∞, we find the stationary model of Biot’s model in one dimension. Note that for
t =⇒∞ we have that Fzz (t ) becomes constant in time, say F , and ∂

∂t = 0. Then the stationary model of Biot is
given by {

∂2P
∂z2 = 0,

−(λ+2µ) ∂
2uz
∂z2 + ∂P

∂z = 0,
(2.12)

and ϵ= ∂uz
∂z . Solving Equation (2.12) we get the following solutions{

P (z) = c1z + c2,

uz (z) = c1
2(λ+2µ) z2 + c3z + c4,

(2.13)

(I) When using the boundary conditions from set B-I we get that c1 = c3 = 0, c2 = F and c4 ∈ R. Then
Equation (2.13) becomes {

P (z) = F,

uz (z) = c4.
(2.14)

Then we also get that

ϵ(z) = 0. (2.15)

Note that we thus have infinitely many solutions for uz . Constant c4 can only be determine if we also
set uz equal to a certain constant at a boundary. However, this additional boundary condition can not
be implemented, since there already are boundary conditions for uz at both boundaries.
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(II) When using the boundary conditions from set B-II we get that c1 = F
nz

, c2 = F , c3 = 0 c4 =− F nz
2(λ+2µ) . Then

Equation (2.13) becomes {
P (z) = F

nz
z +F,

uz (z) = F
2nz (λ+2µ) z2 − F nz

2(λ+2µ) .
(2.16)

Then we also get that

ϵ(z) = F

nz (λ+2µ)
z. (2.17)

2.2. New model
In this section we will describe the governing equations of Biot’s model in two dimensions and give the one-
dimensional stationary model with its solution.

2.2.1. Governing equations (2D)
In two dimensions the model of Van Damme & Den Ouden-Van der Horst can be described by four govern-
ing equations, namely the equation for the pore water pressure (conservation of mass), the equation for the
volumetric strain and the equation for displacement [2]. The derivation of these equations can be found in
our master thesis [1]. The equation for the water pressure is given by

γw

Ks
pβ

∂P

∂t
−∇2P + γw

Ks

∂ϵvol

∂t
= 0. (2.18)

The equation for the volumetric strain is given by

γw

Ks
pβ

∂P

∂t
−∇2ϵvol +

γw

Ks

∂ϵvol

∂t
= 0. (2.19)

The equation for the displacement in horizontal and vertical direction is given by

∂2ux

∂x2 = ∂ϵvol

∂x
, (2.20)

∂2uz

∂z2 = ∂ϵvol

∂z
. (2.21)

2.2.2. Boundary conditions (2D)
In this section we will discuss two sets of boundary conditions used for the new model in two dimensions.
Both sets differ one boundary condition at the bottom z = −nz . Most of the boundary conditions are from
our Msc thesis [1].

In the new model we assume, like in Biot’s model, that the pore water pressure equals the hydrodynamic
load and that the shear stress is zero. However, we do not set the normal effective stress equal to zero [1].
In stead, the vertical momentum balance equation can be used again which is in one dimension given by

−(λ+2µ) ∂ϵvol
∂z + P

∂z = 0 [2].
Then the sets of boundary conditions for the new model are given by [1]

N-I

for z = 0 :


−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

−(λ+2µ) ∂ϵvol
∂z + ∂P

∂z = 0

, (2.22)

for z =−nz :

{
∂ux
∂z = ∂P

∂z = ∂ϵvol
∂z = 0

−λ ∂uz
∂z −2µϵvol = 0

, (2.23)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = ∂ϵvol
∂x = 0 , (2.24)
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for z = 0 :


−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

−(λ+2µ) ∂ϵvol
∂z + ∂P

∂z = 0

, (2.25)

for z =−nz :

{
uz = ∂ux

∂z = 0

P = 0
, (2.26)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = ∂ϵvol
∂x = 0 , (2.27)

Note that −λ ∂uz
∂z −2µϵvol = 0 ⇐⇒−λ ∂ux

∂x − (λ+2µ) ∂uz
∂z = 0, since ϵvol = ∂ux

∂x + ∂uz
∂z .

2.2.3. Stationary model (1D)
When assuming that t =⇒∞, we find the stationary model for the new model in one dimension. Then the
stationary model of Van Damme & Den Ouden-Van der Horst is given by

∂2P
∂z2 = 0,
∂2ϵvol
∂z2 = 0,
∂2uz
∂z2 = ∂ϵvol

∂z .

(2.28)

After solving Equation (2.28) we get the following solutions
P (z) = c1z + c2,

ϵvol(z) = c3z + c4,

uz (z) = c3
2 z2 + c5z + c6.

(2.29)

(I) When using the boundary conditions from set N-I we get that c1 = F
nz

, c2 = F , c3 = F
nz (λ+2µ) , c4 = c5 =

F
(λ+2µ) and c6 ∈R. Note that we can now impose an extra boundary conditions for uz , since we have an

extra governing equations. When we set uz = 0, we get c6 = F nz
2(λ+2µ) . Then Equation (2.29) becomes

P (z) = F
nz

z +F,

ϵvol(z) = F
nz (λ+2µ) z + F

λ+2µ ,

uz (z) = F
2nz (λ+2µ) z2 + F

λ+2µ z + F nz
2(λ+2µ) .

(2.30)

(II) When using the boundary conditions from set N-II we get that c1 = F
nz

, c2 = F , c3 = F
nz (λ+2µ) , c4 = c5 =

F
(λ+2µ) and c6 = F nz

2(λ+2µ) . Then Equation (2.29) becomes
P (z) = F

nz
z +F,

ϵvol(z) = F
nz (λ+2µ) z + F

λ+2µ ,

uz (z) = F
2nz (λ+2µ) z2 + F

λ+2µ z + F nz
2(λ+2µ) .

(2.31)

Note that the solutions to the new model are the same for both set of boundary conditions N-I and N-II.
This is caused by the vertical momentum balance equation which holds everywhere in combination with the
boundary condition −(λ+2µ)ϵvol +P = 0 at the surface z = 0.

2.3. Initial conditions
We assume that at the start, t = 0, everything is at rest [3]. Therefore, no stresses act on the surface in the
beginning which means that there are no stresses and displacements at time t = 0 [2]. According to [1], this
means that the volumetric strain and pressure must be zero too. Then we have that

uz |t=0 = ϵvol|t=0 = P |t=0 = 0.
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Numerical models (1D)

3.1. Biot’s model
For Biot’s model the Finite-Element Method is used for discretisation in space and the Euler method for dis-
cretisation in time. After applying the discretisation first in space and second in time, the final numerical
model can be derived. These steps in between can be read in our literature report [3] or Msc thesis [1].

3.1.1. Boundary conditions case I
Using the boundary condition set B-I given in Section 2.1.2, we get the following numerical equations after
applying the Finite-Element Method described in our literature report [3].

γw
Ks

Cūuuz
t + γw

Ks
pβAP̄PP t + (B +SC )P̄PP =000

(λ+2µ)Būuuz +CP̄PP =000,

Aϵ̄ϵϵ =Cūuuz .

, (3.1)

where Ai , j = ∫ 0
−nz

Ni N j dz,Bi , j = ∫ 0
−nz

∂Ni
∂z

∂N j

∂z dz,Ci , j = ∫ 0
−nz

Ni
∂N j

∂z dz and SCi , j = Ni (−nz )
∂N j (−nz )

∂z . We can
write Equation (3.1) as one systems of matrix-vector multiplication

M tSSS t +MSSS = fff , (3.2)

where

M t =
γw

Ks
pβA γw

Ks
C ;

; ; ;
; ; ;

 , M =
B +SC ;

C (λ+2µ)B ;
; −C A

 , SSS =
 P̄PP

ūuuz

ϵ̄ϵϵ

 , SSS t =

 ∂P̄PP
∂t
∂ūuuz

∂t
∂ϵ̄ϵϵ
∂t

 , fff (t ) =
FFF (t )

000
000,


(3.3)

where FFF n = Fz z(t ) and FFF i = 0 for i ∈ [0,n −1] for n elements. Note that the Neumann boundary conditions
are included. The Dirichlet boundary conditions will be included after time discretisation. We will apply the
Backward-Euler method for time discretisation. When assuming that matrix

(
M t +∆t M

)
is invertible, we get

that for k ≥ 0

SSSk+1 = M−1
new

(
MoldSSSk +∆t fff k+1

)
, (3.4)

where Mnew = M t +∆t M and Mold = M t , k represents a step in time and k + 1 the next step in time. The
Dirichlet boundary conditions can be included by setting the corresponding rows of matrices Mnew and Mold

to zero and then putting pivots in these same rows of Mnew. However, since we now have two boundary
conditions for the vertical displacement, namely a Neumann and a Dirichlet boundary condition at z =−nz ,
one boundary condition will override the other. Therefore, we can not solve this numerical model of Biot
using set boundary conditions B-I.

11
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3.1.2. Boundary conditions case II
Using the boundary condition set B-II given in Section 2.1.2, we get the following numerical equations after
applying the Finite-Element Method described in our literature report [3].

γw
Ks

Cūuuz
t + γw

Ks
pβAP̄PP t +BP̄PP =000

(λ+2µ)Būuuz +CP̄PP =000,

Aϵ̄ϵϵ =Cūuuz .

, (3.5)

where Ai , j =
∫ 0
−nz

Ni N j dz,Bi , j =
∫ 0
−nz

∂Ni
∂z

∂N j

∂z dz and Ci , j =
∫ 0
−nz

Ni
∂N j

∂z dz. We can write Equation (3.5) as two
systems of matrix-vector multiplication {

M tSSS t +MSSS = fff

Aϵ̄ϵϵ =Cūuuz , (3.6)

where

M t =
[γw

Ks
pβA γw

Ks
C

; ;
]

, M =
[

B ;
C (λ+2µ)B

]
, SSS =

[
P̄PP
ūuuz

]
, SSS t =

[
∂P̄PP
∂t
∂ūuuz

∂t

]
, fff (t ) =

[
FFF (t )

000

]
. (3.7)

Note that the Neumann boundary conditions are included. The Dirichlet boundary conditions will be in-
cluded after time discretisation. We will apply the Backward-Euler method for time discretisation. When
assuming that matrices

(
M t +∆t M

)
and A are invertible, we get that{

SSSk+1 = M−1
new

(
MoldSSSk +∆t fff k+1

)
ϵ̄̄ϵ̄ϵk+1 = A−1Cūzūzūz

k+1 , (3.8)

where Mnew = M t +∆t M and Mold = M t .

3.2. New model
For the new model, we also use the Finite-Element Method for discretisation in space and the Euler method
for discretisation in time. After applying the discretisation first in space and second in time, the final nu-
merical model can be derived. These steps in between can be read in our literature report [3] or Msc thesis
[1].

3.2.1. Boundary conditions case I
Using the boundary condition set N-I given in Section 2.1.2, we get the following numerical equations after
applying the Finite-Element Method described in our literature report [3] are given by

γw
Ks

Aϵ̄ϵϵt + γw
Ks

pβAP̄PP t +BP̄PP + (λ+2µ)SC ϵ̄ϵϵ =000
γw
Ks

Aϵ̄ϵϵt + γw
Ks

pβAP̄PP t + (λ+2µ)Bϵ̄ϵϵ =000,

Cūuuz = Aϵ̄ϵϵ.

, (3.9)

where Ai , j =
∫ 0
−nz

Ni N j dz,Bi , j =
∫ 0
−nz

∂Ni
∂z

∂N j

∂z dz and Ci , j =
∫ 0
−nz

Ni
∂N j

∂z dz. We can write Equation (3.9) as two
systems of matrix-vector multiplication {

M tSSS t +MSSS = fff

Cūuuz = Aϵ̄ϵϵ
, (3.10)

where

M t =
[
γw
Ks

pβA γw
Ks

A
γw
Ks

pβA γw
Ks

A

]
, M =

[
B +SC ;

; (λ+2µ)B

]
, SSS =

[
P̄PP
ϵ̄ϵϵ

]
, SSS t =

[
∂P̄PP
∂t
∂ϵ̄ϵϵ
∂t

]
, fff (t ) =

[
FFF (t )

000

]
. (3.11)

Note that the Neumann boundary conditions are included. The Dirichlet boundary conditions will be in-
cluded after time discretisation. We will apply the Backward-Euler method for time discretisation. When
assuming that matrices

(
M t +∆t M

)
and C are invertible, we get that{
SSSk+1 = M−1

new

(
MoldSSSk +∆t fff k+1

)
ūzūzūz

k+1 =C−1 Aϵ̄̄ϵ̄ϵk+1 , (3.12)

where Mnew = M t +∆t M and Mold = M t .
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3.2.2. Boundary conditions case II
Using the boundary condition set N-I given in Section 2.1.2, we get the following numerical equations after
applying the Finite-Element Method described in our literature report [3] are given by

γw
Ks

Aϵ̄ϵϵt + γw
Ks

pβAP̄PP t +BP̄PP =000
γw
Ks

Aϵ̄ϵϵt + γw
Ks

pβAP̄PP t + (λ+2µ)Bϵ̄ϵϵ+SCP̄PP =000,

Cūuuz = Aϵ̄ϵϵ.

, (3.13)

where Ai , j =
∫ 0
−nz

Ni N j dz,Bi , j =
∫ 0
−nz

∂Ni
∂z

∂N j

∂z dz and Ci , j =
∫ 0
−nz

Ni
∂N j

∂z dz. We can write Equation (3.13) as two
systems of matrix-vector multiplication {

M tSSS t +MSSS = fff

Cūuuz = Aϵ̄ϵϵ
, (3.14)

where

M t =
[
γw
Ks

pβA γw
Ks

A
γw
Ks

pβA γw
Ks

A

]
, M =

[
B ;
; (λ+2µ)(B +SC )

]
, SSS =

[
P̄PP
ϵ̄ϵϵ

]
, SSS t =

[
∂P̄PP
∂t
∂ϵ̄ϵϵ
∂t

]
, fff (t ) =

[
FFF (t )

000

]
. (3.15)

Note that the Neumann boundary conditions are included. The Dirichlet boundary conditions will be in-
cluded after time discretisation. We will apply the Backward-Euler method for time discretisation. When
assuming that matrices

(
M t +∆t M

)
and C are invertible, we get that{
SSSk+1 = M−1

new

(
MoldSSSk +∆t fff k+1

)
ūzūzūz

k+1 =C−1 Aϵ̄̄ϵ̄ϵk+1 , (3.16)

where Mnew = M t +∆t M and Mold = M t .



4
Numerical results (1D)

In this section we will discuss the numerical solutions found for the numerical models assuming incompress-
ible pore water and using sets boundary conditions B-I and (BII) for Biot’s model and N-I and N-II for the new
model. For the first set of boundary conditions (Case I) we will only present the numerical solutions for the
normal effective stress, the volumetric strain, pore water pressure and the vertical displacement to the new
numerical model in Section 4.1, since we can not solve the numerical model of Biot uniquely as described in
Section 3.1.1. For the second set of boundary conditions (Case II) we will present the numerical solutions for
the normal effective stress, volumetric strain, pore water pressure and vertical displacement to Biot’s model
and the numerical solutions for these variables to the new model in one plot. This will be denoted in Section
4.2. For both cases, we will also show the derivatives of these variables.

The values of the parameters are given by Table 4.1, 4.2 and 4.3.

Table 4.1: Parameters of one layer of sandy deposit [4].

Soil properties Symbols Values
Hydraulic conductivity [m/s] Ks 1.8 ·10−4

Porosity p 0.425
Poisson ratio vp 0.3
Shear modulus [Pa] µ 1.27 ·107

Specific weight of water [N/m3] γw 9810

Table 4.2: Parameters of compressibility equation given by β= sβ0 + 1−s
P0

.

Soil properties Symbols Values
Degree of saturation [4] s 1.0
Compressibility of pure water [5] β0 0.5 ·10−9

Absolute pressure in the water [Pa] [5] P0 105

Table 4.3: Parameters of the waves [4].

Wave properties Symbols Values
Wave period [s] T 9
Wave height [m] H 3.5

15



16 4. Numerical results (1D)

4.1. Boundary conditions case I
When using the set of boundary conditions given by N-I for the new numerical model, the solutions for the
normal effective stress σ′

zz , the volumetric strain ϵvol, pore water pressure P and the vertical displacement uz

to the new numerical model are shown in Figure 4.1. The x-axis represents the depth z going from −nz to 0,
where nz = 1.8 metres is chosen. The y-axis represents the variable. The units of the variables are given in the
caption of the figure.

Then we find that the solutions are approximately linear functions for the normal effective stress, the
volumetric strain and the water pressure and the solution for the vertical displacement is a bit parabolic. We
expect such solutions over time according to the stationary solutions given by Equation (2.30). In Figure 4.1

we find the relation (λ+ 2µ)ϵvol = P and in Figure 4.2 we find the relation (λ+ 2µ) ∂ϵvol
∂z = ∂P

∂z . In Figure 4.1

and Figure 4.2 we also find that indeed the relation ϵvol = ∂uz
∂z holds. Furthermore, we find that the boundary

conditions given by N-I hold.

Figure 4.1: σ′
zz [Pa], ϵvol [-], P [Pa], uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of

boundary conditions used is N-I.
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Figure 4.2: Derivatives of σ′
zz ,ϵvol,P,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10) and

the set of boundary conditions used is N-I.

4.2. Boundary conditions case II
When using the set of boundary conditions given by B-II for Biot’s numerical model and N-II for the new
numerical model, the solutions for the normal effective stressσ′

zz , the volumetric strain ϵvol, pore water pres-
sure P and the vertical displacement uz to Biot’s numerical model and the new numerical model are shown
in Figure 4.3. The x-axis represents the depth z going from −nz to 0, where nz = 1.8 metres is chosen. The
y-axis represents the variable. The units of the variables are given in the caption of the figure.

Then we find again that the solutions to the new model are approximately linear functions for the normal
effective stress, the volumetric strain and the water pressure and the solution for the vertical displacement
is a bit parabolic which is expected because of the stationary solutions given by Equation (2.31). We find
similar behaviour for the solutions to the numerical model of Biot. The solutions for the pore water pressure
to both models converge to the same stationary solution. In Figure 4.3 we find the relation (λ+2µ)ϵvol = P for

the new model and (λ+2µ)ϵvol = P −Fzz . In Figure 4.4 we find the relation (λ+2µ) ∂ϵvol
∂z = ∂P

∂z for both Biot’s

model and the new model. In Figure 4.3 and Figure 4.4 we also find that indeed the relation ϵvol = ∂uz
∂z holds.

Furthermore, we find that the boundary conditions given by B-II hold for Biot’s model and N-II for the new
model.

Note that the solutions for the normal effective stress and volumetric strain differ by a constant in space,
approximately. Note that the solutions for the normal effective stress, volumetric strain and vertical displace-
ments for Biot’s model and the new model differ in sign. This results in a vertical displacement of the soil in
opposite directions for both models. Since we have a one-dimensional setting, we have that the volumetric
strain equals the derivative of the vertical displacement with respect to z. Since we set uz = 0 at z =−nz , we
get a negative vertical displacement when the water pressure is positive and a negative volumetric strain. This
is the case for the one-dimensional Biot’s model. However, when the water pressure is positive and the volu-
metric strain positive, we get a positive vertical displacement. This is the case for the one-dimensional new
model. Typically, we expect the vertical displacement to be negative [1], when the pore water pressure is pos-
itive (compression). In our literature report [3], we also found that this latter did not hold for the new model
in one dimension. This could be done due to the fact that the simplifications made for the one dimension. In
Chapter 5 we will present the solutions for both cases in two dimensions.



18 4. Numerical results (1D)

Figure 4.3: σ′
zz [Pa], ϵvol [-], P [Pa], uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of

boundary conditions used is B-II for Biot’s numerical model and N-II for the new numerical model.

Figure 4.4: Derivatives of σ′
zz ,ϵvol,P,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10) and

the set of boundary conditions used is B-II for Biot’s numerical model and N-II for the new numerical model.



5
Numerical results (2D)

We will now look into the numerical results in two dimensions in order to be able to compare the models
better. For the numerical model in two dimensions we use the same methods as for 1D. So we apply the Finite-
Element Method to the models for discretisation in space and the Backward-Euler method for discretisation
in time. The steps taken are described in our Msc thesis [1] in Chapter 4 and Section 5.1.1 for Biot’s model,
and Chapter 7 and Section 8.1.1 for the new model. We choose nz = −2 and nx = 1 which means that the
computational domain becomes [0,1]× [−2,0]. We also set the hydraulic load in two dimensions to be [1]

Fzz (x, t ) = 0.5γw H sin

(
2π

t

T

)
cos

(
2π

x

L

)
, (5.1)

where γw [N/m3] the specific weight of the pore water, H [m] is the wave height, L [m] the length of the wave,
T [s] the wave period.

The values of the parameters are given by Table 4.1, 4.2 and 4.3. Furthermore, we set the wave length L
[m] equal to nx .

5.1. Boundary conditions case I
Using boundary conditions B-I for Biot’s model, we find the results shown in Figures 5.1, 5.2 and 5.3. When
using boundary conditions N-I for the new model, we find the results shown in Figures 5.4, 5.5 and 5.6. Then
we find that the differences between the solutions water pressure and horizontal displacement are similar for
both models. The volumetric strain behaves the same for Biot’s model and the new model, but it is about two
times smaller for Biot’s model than for the new model. The momentum balance equations hold for the new
model but not for Biot’s model. However, we find that the vertical displacement of the new model behaves
differently and has values much smaller than for Biot’s model. Typically, we expect the soil particles to move
downwards when the pore water pressure is positive. However, in quicksand the soil particles are emerged
by water. Therefore, when there is positive pore water pressure and no normal effective stress at point x = x∗,
there is a bit of soil particles going downwards at point x = x∗ and then sideways upwards movement of soil
particles at the points next to x = x∗.

19
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Figure 5.1: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of
boundary conditions used is B-I.

Figure 5.2: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is B-I.
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Figure 5.3: Derivatives of σ′
zz ,ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10)

and the set of boundary conditions used is B-I.

Figure 5.4: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of
boundary conditions used is N-I.
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Figure 5.5: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is N-I.

Figure 5.6: Derivatives of σ′
zz ,ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10)

and the set of boundary conditions used is N-I.
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5.2. Boundary conditions case II
Using boundary conditions B-II for Biot’s model, we find the results shown in Figures 5.7, 5.8 and 5.9. When
using boundary conditions N-II for the new model, we find the results shown in Figures 5.10, 5.11 and 5.12.
Then we find that the differences between the solutions for the water pressure and horizontal displacement
are similar for both models. The solution for the volumetric strain behaves similar for both models the but is
about four times smaller for Biot’s model than for the new model. The solution for the vertical displacement
behaves also similar for both models but is about four times larger for Biot’s model than for the new model.

Figure 5.7: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of
boundary conditions used is B-II.
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Figure 5.8: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is B-II.

Figure 5.9: Derivatives of σ′
zz ,ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10)

and the set of boundary conditions used is B-II.
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Figure 5.10: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 ·10−10) and the set of
boundary conditions used is N-II.

Figure 5.11: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β = 5 ·10−10) and
the set of boundary conditions used is N-II.
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Figure 5.12: Derivatives of σ′
zz ,ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10)

and the set of boundary conditions used is N-II.



6
Conclusions

The aim of this report was to extend the Msc thesis with two new situations for the computational domain
in order to find the maximum difference between the model of Biot and the model of Van Damme & Den
Ouden-Van der Horst. We came to the following conclusions based on this study.

Model of Biot Model of Van Damme and Den Ouden-Van der Horst

1. Momentum balance equations are not satisfied.
Momentum balance equations are (approximately) sat-
isfied.

2.
In one dimension, less boundary conditions for vertical
displacement can be included.

In one dimension, more boundary conditions for verti-
cal displacement can be included.

3.
In one dimension, we found a negative solution for the
vertical displacement to Biots model, when the pore
water pressure is positive.

In one dimensions, we found a positive solution for the
vertical displacement to the new model, when the pore
water pressure is positive.

4.

In this report we found that the following conclusion of our Msc thesis still holds: "The solution to the new model
for the dynamic pore water pressure is similar to the solution to Biot’s model. However, the solutions to the new
model for the other variables as volumetric strain and displacements can differ significantly." This is especially true
for the two-dimensional quicksand case, since then the behaviour of the vertical displacement for the new model
is totally different from the vertical displacement for Biot’s model. To know which behaviour is right, more research
must be done for quicksand. The volumetric strain and displacement are hard to measure or can not be measured.
Therefore, it is not possible yet to make a conclusion which model is best. However, we can verify that Biot’s model
and the new model can not only differ in value, but also in behaviour.
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1
Introduction

This report is an extension on our MSc thesis last year [1]. In this report we will discribe two additional cases
of boundary conditions for the model of Biot and the new model by Van Damme & Den Ouden-Van der Horst
[2] for comparison between these two models in more detail.

In our literature report [3] and MSc thesis [1] we assumed that a positive pore water pressure is a pushing
force and a negative pore water pressure is a pulling force. In Figure 1.1, the hydraulic load is denoted by
the red arrows. Note that when the red arrow is pointing downwards there is a positive pressure on the soil
(pushing force). On the other hand, when the red arrow is pointing upwards there is a negative pressure on
the soil (pulling force) [1]. Furthermore, we have that the vorticity is zero everywhere on the domain.

Figure 1.1: A flat foreshore subjected to water waves [1].

In Chapter 2 we will give a short recap of the two-dimensional governing equations for Biot’s model in
Section 2.1 and for the new model in Section 2.2. In Section 2.1.2 one additional case of boundary conditions
for Biot’s model is stated. In this case, the shear stress and the pore water pressure are set equal to zero at the
top, while there is a pressure on the bottom. Furthermore, the effective stress is set equal to zero at the bottom.
In Section 2.2.2 we will introduce two additional cases of boundary conditions for the two-dimensional new
model. In the first case for the new model the normal effective stress and pore water pressure are set equal
to zero at the top while there is pressure at the bottom. In the second case for both models the shear stress
equal and pore water pressure are set to zero at the top while there is pressure at the bottom. Since we do
not include gravity for these cases, we can flip this case along a horizontal line (so the top above becomes the
bottom and vice versa) and reuse the calculation methods of our MSc thesis. In Section 2.3 we will describe
the initial conditions. In Chapter 3 we will discuss the two-dimensional numerical results for Biot’s model
and the new model using the different sets of boundary conditions. Finally, in Chapter 4 we will make some
conclusions.
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2
Models (2D)

In the next sections we will take a look into the two-dimensional governing equations of Biot’s model and the
new model of Van Damme & Den Ouden-Van der Horst. Note that we have set the vorticity ω := ∂ux

∂z − ∂uz
∂x

equal to zero [1].

2.1. Biot’s model
In this section we will describe the two-dimensional governing equations of Biot’s model and the correspond-
ing set of boundary conditions.

2.1.1. Governing equations
It is common to describe Biot’s model by three governing equations in two dimensions which are given by the
conservation of mass equation and the momentum balance equation [1]. The conservation of mass equation
in two dimensions is given by

γw

Ks
pβ

∂P

∂t
−∇2P + γw

Ks

∂

∂t

(
∂ux

∂x
+ ∂uz

∂z

)
= 0. (2.1)

Respectively, the horizontal and vertical momentum balance equations are given by

−(λ+2µ)∇2ux + ∂P

∂x
= 0, (2.2)

−(λ+2µ)∇2uz + ∂P

∂z
= 0. (2.3)

To determine the volumetric strain we use the following equation

ϵ= ∂ux

∂x
+ ∂uz

∂z
. (2.4)

2.1.2. Boundary conditions
In this section we will discuss the boundary conditions for the two-dimensional model of Biot. Most of the
boundary conditions are from our MSc thesis [1].

In Biot’s model it is common to set the total normal stress equal to the hydrodynamic load and to suppose
that the normal effective stress equals zero which results in the water pressure being equal to the hydrody-
namic load [3]. Then we set the boundary conditions σ′

zz :=−2µ ∂uz
∂z −λϵvol = 0 and P = Fzz (t ) at z = 0, where

Fzz (t ) represents the normal stress and only depends on time and is chosen to be positive [1]. The shear stress

at the top is set equal to zero, i.e. −µ
(
∂ux
∂z + ∂uz

∂x

)
= 0

At the bottom, z = −nz , we assume that the pore water pressure equals zero, i.e. P = 0. The shear stress
is set equal to zero at the bottom by uz = ∂ux

∂z = 0, because of stability issues for the numerical model of Biot.
This way we had no stability issues which we got when we did not define a Dirichlet boundary condition for
the horizontal displacement uz at the bottom z =−nz .

At x = 0 and x =−nx we get that ∂uz
∂x = 0, ux = 0 and ∂P

∂x = 0 [1].
Then we get that for Biot’s model the sets of boundary conditions are given by

7
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B-I

for z = 0 :


−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

−λ ∂ux
∂x − (λ+2µ) ∂uz

∂z = 0

, (2.5)

for z =−nz :

{
uz = ∂ux

∂z = 0

P = 0
, (2.6)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = 0 , (2.7)

Note that −λ ∂uz
∂z −2µϵvol = 0 ⇐⇒−λ ∂ux

∂x − (λ+2µ) ∂uz
∂z = 0, since ϵvol = ∂ux

∂x + ∂uz
∂z .

Then we choose that [1]

Fzz (x, t ) = 0.5γw H sin

(
2π

t

T

)
cos

(
2π

x

L

)
, (2.8)

where γw [N/m3] the specific weight of the pore water, H [m] is the wave height, L [m] the length of the wave,
T [s] the wave period. On the other hand, when the pore water pressure at the bottom is zero, then there is no
normal stress acting on the pore water particles and the total normal stress will only depend on the normal
effective stress. This describes a case of uplift when flipped over a horizontal line.

2.2. New model
In this section we will describe the governing equations of the new model in two dimensions and the corre-
sponding sets of boundary conditions..

2.2.1. Governing equations
In two dimensions, the model of Van Damme & Den Ouden-Van der Horst can be described by four govern-
ing equations, namely the equation for the pore water pressure (conservation of mass), the equation for the
volumetric strain and the equation for displacement [2]. The derivation of these equations can be found in
our master thesis [1]. The equation for the water pressure is given by

γw

Ks
pβ

∂P

∂t
−∇2P + γw

Ks

∂ϵvol

∂t
= 0. (2.9)

The equation for the volumetric strain is given by

γw

Ks
pβ

∂P

∂t
−∇2ϵvol +

γw

Ks

∂ϵvol

∂t
= 0. (2.10)

The equation for the displacement in horizontal and vertical direction is given by

∂2ux

∂x2 = ∂ϵvol

∂x
, (2.11)

∂2uz

∂z2 = ∂ϵvol

∂z
. (2.12)

2.2.2. Boundary conditions
In this section we will discuss two sets of boundary conditions used for the new model in two dimensions.
Both sets differ one boundary condition at the bottom z = −nz . Most of the boundary conditions are from
our MSc thesis [1].

In the new model we assume, like in Biot’s model, that the pore water pressure equals the hydrodynamic
load and that the shear stress is zero. However, we do not set the normal effective stress equal to zero [1]. In

stead, the vertical momentum balance equation can be used again which is given by −(λ+2µ) ∂ϵvol
∂z + P

∂z = 0
[2].

Then the sets of boundary conditions for the new model are given by [1]
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N-I

for z = 0 :

{
−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

, (2.13)

for z =−nz :

{
−λ ∂uz

∂z −2µϵvol = 0, which can be written as ux = ∂uz
∂x = 0 if P = 0

P = 0
,

(2.14)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = 0 , (2.15)

N-II

for z = 0 :

{
−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = Fzz

, (2.16)

for z =−nz :

{
−µ

(
∂ux
∂z + ∂uz

∂x

)
= Fxz

P = 0
, (2.17)

and for x = 0 and x = nx :
{

ux = ∂uz
∂x = ∂P

∂x = 0 , (2.18)

We use the vertical momentum balance equation −(λ+2µ) ∂ϵvol
∂z + ∂P

∂z = 0 for the volumetric equation at

z = 0 and/or z =−nz , ϵ= ∂ux
∂x + ∂uz

∂z for the vertical displacement equation at z = 0 and/or z =−nz . Since these
two conditions holds everywhere on the domain and are more like definitions, we use these as boundary
conditions to solve the equations but are not ’new’ boundary conditions and therefore not stated above.

2.3. Initial conditions
We assume that at the start, t = 0, everything is at rest [3]. Therefore, no stresses act on the surface in the
beginning which means that there are no stresses and displacements at time t = 0 [2]. According to [1], this
means that the volumetric strain and pressure must be zero too. Then we have that

uz |t=0 = ϵvol|t=0 = P |t=0 = 0.



3
Numerical results (2D)

We will now look into the numerical results in two dimensions. For the numerical model in two dimensions
we use the same methods as in our MSc thesis [1]. So we apply the Finite-Element Method to the models
for discretisation in space and the Backward-Euler method for discretisation in time. The steps taken are
described in our MSc thesis [1] in Chapter 4 and Section 5.1.1 for Biot’s model, and Chapter 7 and Section
8.1.1 for the new model. We choose nz = 2 and nx = 1 which means that the computational domain becomes
[0,nx ]× [−nz ,0] = [0,1]× [−2,0].

The values of the parameters are given by Tables 3.1, 3.2 and 3.3.

Table 3.1: Parameters of one layer of sandy deposit [4].

Soil properties Symbols Values
Hydraulic conductivity [m/s] Ks 1.8 ·10−4

Porosity p 0.425
Poisson ratio vp 0.3
Shear modulus [Pa] µ 1.27 ·107

Specific weight of water [N/m3] γw 9810

Table 3.2: Parameters of compressibility equation given by β= sβ0 + 1−s
P0

.

Soil properties Symbols Values
Degree of saturation [4] s 1.0
Compressibility of pure water [5] β0 0.5 ·10−9

Absolute pressure in the water [Pa] [5] P0 105

Table 3.3: Parameters of the waves [4].

Wave properties Symbols Values
Wave period [s] T 9
Wave height [m] H 3.5
Wave length [m] L nx

11



12 3. Numerical results (2D)

3.1. Biot’s model
Using boundary conditions B-I for Biot’s model, we find the results shown in Figures 3.1, 3.2 and 3.3. Then
we find that all boundary conditions of B-I hold. Note that the volumetric strain behaves a bit different than
we expect. It is not following the behaviour of the water pressure at z = 0. However, we noticed that when
we set ∂ux

∂z = 0, we do find the same behaviour for the volumetric strain and water pressure. Note that by
setting the shear stress to zero and having the vorticity to be zero everywhere on the domain, we get that
∂ux
∂z = 0. This difference is also shown in our MSc thesis [1]. Therefore, we will also show the results for the

boundary conditions B-I with the shear stress boundary condition replaced by ∂ux
∂z = 0. We will call this new

set of boundary conditions B-II. This is shown in Figures 3.4, 3.5 and 3.6. We also noticed that the boundary
conditions B-I (and B-II) were the only boundary conditions that describe similar behaviour as boundary
conditions N-I and N-II and gave stable results (all boundary conditions met and no results going to infinity).
Lastly, note that the momentum balance equations do not hold for Biot’s model.

Figure 3.1: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of
boundary conditions used is B-I.



3.1. Biot’s model 13

Figure 3.2: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is B-I.

Figure 3.3: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is B-I.
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Figure 3.4: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β= 5 ·10−10) and the new set of
boundary conditions used is B-II.

Figure 3.5: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β= 5 ·10−10) and the
new set of boundary conditions used is B-II.
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Figure 3.6: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β= 5 ·10−10) and the
new set of boundary conditions used is B-II.

3.2. New model
• When using boundary conditions N-I for the new model, we find the results shown in Figures 3.7, 3.8

and 3.9. Then we noticed that all boundary conditions of N-I hold. Note that also the momentum bal-
ance equations hold for the new model with N-I. Furthermore, we find that the volumetric strain times
the constant (λ+2µ) equals the water pressure, since we implemented the new model like in Section
8.1.1 of our MSc thesis [1]. Therefore, we also find that the volumetric strain follows the behaviour
of the pore water pressure and is more than times larger than the case B-I for Biot’s model. For the
new model with N-I we find that the horizontal displacement is about three times as large and that the
vertical displacement is about three times smaller than for Biot’s model with B-I.

When we compare the results of the new model with N-I to the results of Biot’s model with B-II, we
find that the solutions for the volumetric strain, water pressure and displacements behaves similar
for both models. However, the volumetric strain is about four times larger, the vertical displacement
about four times smaller for the new model with N-I than for Biot’s model with B-II. The horizontal
displacements are about the same. Lastly, we find that when changing ’the shear stress being equal
to zero’ to ’the derivative of the horizontal displacement with respect to z being equal to zero’ did not
make a noticeable difference.

• When using boundary conditions N-II for the new model, we find the results shown in Figures 3.10,
3.11 and 3.12. Then we find that all boundary conditions of N-II hold. We find that the volumetric
strain follows the behaviour of the pore water pressure and is again more than then times larger than
the case B-I for Biot’s model. For the new model using N-II we find that the horizontal displacement
is about two times larger and that the vertical displacement is about two times smaller than for Biot’s
model using boundary conditions B-I.

When we compare the results of the new model with N-II to the results of Biot’s model with B-II, we find
that the solution for the volumetric strain behaves similar for both models, but the volumetric strain
is about four times larger for the new model than for Biot’s model. The solution for the horizontal
displacement of both models behaves similar, but the solution of the new model with N-II is about
two-third of the solution of Biot’s model with B-II. The solution for the vertical displacement behaves
also similar for both models but it is more than two times smaller for the new model with N-II than for
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Biot’s model with B-II. Lastly, we find that when changing σ′
zz = 0 to ∂ux

∂z = 0 did not make a noticeable
difference.

Figure 3.7: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 · 10−10) and the set of
boundary conditions used is N-I.

Figure 3.8: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is N-I.
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Figure 3.9: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β= 5 ·10−10) and the
set of boundary conditions used is N-I.

Figure 3.10: ϵvol [-], P [Pa], ux [m] and uz [m] at t = 92.25s, when water is assumed to be incompressible (β = 5 ·10−10) and the set of
boundary conditions used is N-II.
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Figure 3.11: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to x, when water is assumed to be incompressible (β = 5 ·10−10) and
the set of boundary conditions used is N-II.

Figure 3.12: Derivatives of ϵvol,P,ux ,uz at t = 92.25s with respect to z, when water is assumed to be incompressible (β = 5 ·10−10) and
the set of boundary conditions used is N-II.



4
Conclusions

The aim of this report was to extend the MSc thesis with two new situations for the computational domain
in order to find the maximum difference between the model of Biot and the model of Van Damme & Den
Ouden-Van der Horst. We came to the following conclusions based on this study.

Model of Biot Model of Van Damme and Den Ouden-Van der Horst

1. Momentum balance equations are not satisfied.
Momentum balance equations are (approximately) sat-
isfied.

2.
The numerical version of Biot’s model is less stable than
the numerical version of the new model.

The numerical version of the new model looks quite
stable. More different boundary conditions can be set
than for Biot.

3.

All cases of Biot’s model and the new model describe an uplift of a layer with pressure on the bottom, but have
different boundary conditions at the top. In the methods we used, these cases were flipped along a horizontal line,
since there is no gravity assumed. After comparing these cases of Biot’s model and the new model we found that
the following conclusion of our MSc thesis still holds: "The solution to the new model for the dynamic pore water
pressure is similar to the solution to Biot’s model. However, the solutions to the new model for the other variables
as volumetric strain and displacements can differ significantly." Since the volumetric strain and displacement are
hard to measure or can not be measured and the numerical models can be a bit unstable, it is not possible yet to
make a conclusion which model is best. Therefore, more research must be done.

19



Bibliography

[1] Klein, F. (2023a). Compressible vs. incompressible pore water in fully-saturated poroelastic soil: Msc
thesis [Master’s thesis, TU Delft and Rijkswaterstaat].

[2] Van Damme, M., & Den Ouden-Van der Horst, D. (2023). An alternative process-based approach to pre-
dicting the response of water saturated porous media to hydrodynamic loads. Journal of Porous Media.
https://doi.org/10.1615/JPorMedia.2023045106

[3] Klein, F. (2023b). Compressible vs. incompressible pore water in fully-saturated poroelastic soil: Litera-
ture report [Master’s thesis, TU Delft and Rijkswaterstaat].

[4] Liu, B., Jeng, D.-S., Ye, G., & Yang, B. (2015). Laboratory study for pore pressures in sandy deposit under
wave loading. Ocean Engineering, 106, 207–219. https://doi.org/https://doi.org/10.1016/j.oceaneng.
2015.06.029

[5] Verruijt, A. (2010). Soil mechanics.

21

https://doi.org/10.1615/JPorMedia.2023045106
https://doi.org/https://doi.org/10.1016/j.oceaneng.2015.06.029
https://doi.org/https://doi.org/10.1016/j.oceaneng.2015.06.029


 

 

 

17 of 17  A comparison of two models for consolidation with regard to the potential impact on practice 

11210371-028-GEO-0002, 10 December 2024 

 

 


	Msc_thesis_extension_Deltares.pdf
	Introduction
	Models
	Biot's model
	Governing equations (2D)
	Boundary conditions (2D)
	Stationary model (1D)

	New model 
	Governing equations (2D)
	Boundary conditions (2D)
	Stationary model (1D)

	Initial conditions

	Numerical models (1D)
	Biot's model
	Boundary conditions case I
	Boundary conditions case II

	New model
	Boundary conditions case I
	Boundary conditions case II


	Numerical results (1D)
	Boundary conditions case I
	Boundary conditions case II

	Numerical results (2D)
	Boundary conditions case I
	Boundary conditions case II

	Conclusions
	Bibliography

	Msc_thesis_extension_Deltares_v2.pdf
	Introduction
	Models (2D)
	Biot's model
	Governing equations
	Boundary conditions

	New model 
	Governing equations
	Boundary conditions

	Initial conditions

	Numerical results (2D)
	Biot's model
	New model

	Conclusions
	Bibliography




