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1  Report HEPEX activities 

The present report summarizes the activities pursued under the Hydrological Ensemble 
prediction Experiment (HEPEX) initiative during the year 2008/2009. The activities are 
focused on improving knowledge on the handling of forecasting uncertainty and thus 
improving flood forecasts capabilities at Deltares. The contributions of Deltares to the HEPEX 
initiative fall under the Flood Control 2015 (FC2015) program.   
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2 Introduction 

A workshop on hydrologic ensemble post-processing was held as a subgroup activity of  
HEPEX (the Hydrologic Ensemble Prediction Experiment). The goal of the workshop was to 
identify opportunities to develop international scientific collaboration to improve hydrologic 
ensemble forecasts through statistical post-processing of the output from hydrologic 
ensemble forecast models.  The invitation-only workshop was hosted by Deltares (formerly 
WL Delft Hydraulics) in Delft, June 23-25, 2008, and approximately 25 individuals from the 
U.S. and Europe participated.  Participants agreed to initiate an ongoing collaborative effort 
focused on the post-processing subtopic, and this science plan, which is based on 
discussions and findings at the workshop, outlines the motivation, goals, science questions, 
activities and structure of that effort.  
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3 Motivation and Goals 

The Hydrologic Ensemble Prediction Experiment (HEPEX) Uncertainty Post-processing 
Project (HUPP) is motivated by the broad recognition in the hydrologic prediction community 
that: (a) hydrologic models are generally unable to reproduce observed streamflow behavior 
with zero error even when forced with high quality met 
eorological inputs, after extensive calibration using the latest and most sophisticated 
techniques, and when run using comprehensive and frequent assimilation of observations to 
adjust and theoretically reduce errors in simulated states; and (b) that these simulation errors 
translate into forecast errors that are further compounded by the inherent uncertainty of future 
meteorological forcing.  The basic assumption or requirement of many follow-on applications 
that hydrologic forecasts must be unbiased and statistically reliable necessitates the 
consideration of approaches (generally statistical and applied as a post-process to hydrologic 
forecasting) to remove bias and spread errors (while maintaining or improving forecast skill) 
from hydrologic forecasting system output.  This general need applies equally to deterministic 
hydrologic forecasting systems (which are common in operations), but we here focus on 
ensemble predictions.   
 
The HUPP goal is to gather a community of researchers and practitioners in the hydrologic 
forecasting area to explore alternative post-processing techniques, identify common science 
issues and develop a shared vision of a conceptual framework for evaluating post-processing 
techniques.  This work is expected to lead to development of practical but sound solutions to 
the ensemble bias and spread problem that can be implemented in an operational setting to 
produce reliable, bias-free ensemble forecasts.  
 
HUPP is only one component of the larger HEPEX effort, which is depicted in Figure 3.1. The 
overarching goal for HEPEX is “to develop and test procedures to produce reliable 
hydrological ensemble forecasts, and to demonstrate their utility in decision making related to 
the water, environmental and emergency management sectors.” (HEPEX Implementation 
Plan, 2007).    
 

 
 

Figure 3.1 Schematic of a hydrological ensemble prediction system, showing the integration of the ensemble 
streamflow forecast post-processing component (in orange) 
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4 Background 

Increasingly, users of hydrologic forecasts want quantitative estimates of forecast uncertainty 
rather than only an approximation of the single most probable scenario. In response, 
operational agencies are beginning to employ ensemble forecast techniques for hydrologic 
predictions. Ensemble forecast systems provide an estimate of the most probable future 
scenario, and also offer a wide range of possible outcomes that account for all sources of 
forecast uncertainty. These sources include precipitation and other meteorological inputs, 
estimates of boundary/initial hydrological conditions, the hydrologic forecast models, and 
model parameters. [copied from implementation plan] 

4.1 Description of Typical Current Operational System (including Mod Practices) 
 
Current operational forecasting systems consist of a chain of hydrological and hydraulic 
models, that are connected in series and are integrated with live data streams. The data 
streams include observations of precipitation, temperature and water levels, as well as 
precipitation forecast products from numerical weather prediction models and in some cases 
weather radar now-casts.  
 
The hydrological models simulate the rainfall-runoff response of the land phase, while water 
in the river network is propagated by means of channel hydraulics models. The modelling 
system is operated in two modes: in i) historical mode and in ii) forecast mode. 
 
i) The historical mode of operation consists in running the model chain over a historic period 
up to the onset of the forecast. The meteorological input is provided by observed 
precipitation, temperature and evaporation. During the historic run, observations of water 
levels or discharges are assimilated into the hydrological and hydraulic models, in order to 
correct internal model states and create optimal model initial conditions for the forecast. 
 
ii) In forecast mode the model chain is driven by precipitation, temperature as well as 
evaporation forecasts form either now-casting systems (weather radars) or numerical weather 
prediction (NWP). The lead time of these forecasting products can range between a few 
hours up to 10 days ahead. The NWP products can be either deterministic, or entail 
probabilistic products such as ensemble weather forecasts form ensemble prediction systems 
(EPS). Ensemble weather predictions are obtained by perturbing the initial conditions vectors 
for numerical weather models. Currently used ensemble weather forecasts can include up to 
50 weather forecasts.  
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Figure 4.1 Schematic view of the structure of conventional flood forecasting systems 
 
The observed meteorological data are imported into the system and validated. Outliers or 
unreliable data values are identified and replaced by interpolation.  
 
Subsequently precipitation and temperature series are mapped from the sparse grid of station 
locations towards the locations that correspond to the input points for the hydrological 
models. The NWP output is supplied in grid format. The respective values need to be 
averaged over basin shapes a subsequently mapped to the basin centres. 
 
Cases of missing data are handled via appropriate selection hierarchies, which assign 
different priorities to a range of possible procedures for data filling and data 
exploration/interpolation. In this way an availability of continuous data series with a seamless 
transition between observations and forecasts is ensured. 
 
The forecasts are performed at regular intervals during the day. The models calculate 
forecasted flow rates at critical locations, which are then disseminated to decision-makers.  

4.2 Predictive Uncertainty 
 
The predictive uncertainty (Krzysztofowicz [2001a]) can be defined as a measure of the 
degree of certitude on the occurrence of a flood event, conditional on all information available 
at the start of the forecast.  
 
In operational river flow forecasting, an "event" consists of the exceedance of a critical stream 
flow rate or water level at the control section of the basin.  
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The predictive uncertainty on the forecasted flow (expressed in terms of discharge or water 
level) for a given lead time can be expressed in terms of a conditional probability density 
function : 
 
 

0 0 1 0| , , ,.....,n n kh s h h h  
 
where nh is the water level at lead time 0 nt , ns  is the water level at the same lead time 

forecasted by the model, 0h is the water level observed at the forecasting location at the 

forecast base time 0t .  The quantities 0 kh  are water levels observed at the forecasting 

location at time 0 kt ahead of the forecast. 
 
The predictive uncertainty represents a family of probability density functions on future flow, 
conditional on the model forecasts and on past observations. We note that conditioning on 
additional variables such as flow observations at locations further upstream or precipitation is 
in principle possible. 
 
The basic concept underlying the definition of predictive uncertainty is that the uncertainty on 
future water level observations is conditioned on all possible information available to the 
forecaster, including model predictions and a range of historical observations up to the 
forecast base time.  
 
The challenge consists in finding methods to estimate  in real-time, and to be able to 
attribute a probability of occurrence to a forecasted event. Estimating the predictive 
uncertainty constitutes the central task of post-processing flow forecasts. 
 
One possibility for specifying the predictive uncertainty has been laid out by Krzystofowicz 
(1999). He proposes to use Bayesian inference, by updating a prior density. Bayes theorem is 
by combining a prior probability density on flow with a stochastic specification of the model 
error, which is expressed in terms of a likelihood function. The revised posterior distribution 
constitutes an estimate of the predictive uncertainty. 
 
It is important to point out, that the predictive uncertainty itself does not represent a 
description of the model error, but rather a probability on the future flow, conditional on a 
model forecast and past flow observations.  

4.3 Discussion of Forecast Limitations 
 
Forecasts produced by integrated data-modelling systems can be affected by limitations due 
to a series of reasons, which we will address next: 
 
Input uncertainty: 
Forecast of precipitation is uncertain at best. The uncertain input into hydrological prediction 
models leads to an uncertain output (river stages, discharges), which is most suitably 
quantified in terms of a probability distribution for the forecasted quantity conditional on other 
variables (see previous section). The input uncertainty weights in much more prominently 
than other sources uncertainties, such as uncertainty on model states and boundary 
conditions. A significant input uncertainty seriously compromises the value of a forecast and 
imposes limitations on the forecasting product.   
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Poor model performance: 
Models are affected by errors. There can be i) systematic errors attributable to poor model 
conceptualizations, leading to a model bias, or ii) sporadic errors attributable to lack of initial 
data and model initialization as well as errors due to absence or poor estimates of boundary 
and initial conditions. In either case error correction methods need to be applied at the onset 
of a forecast.  
Error correction can work at different levels of complexity and can start with simple output or 
input correction, and go all the way to more complex procedures aiming at adjusting internal 
model states and parameters. The error correction is based on comparisons of model output 
against observations over a historical period of observations preceding the forecast base 
time. 
 
A postprocessor for forecasts should enable a forecaster to asses the information content of a 
model and the limitations it poses on the forecast. In case of a particularly poor performing 
model the information content of a model-based forecast could be less than just using 
historical information.  
 
Lead time 
 
In some situations, a too short lead time can pose severe limitations on the actual value of a 
forecast. The lead-time is the time horizon over which a critical variable such as a river stage 
can be forecasted. Especially in small river basins with a short contraction time the forecast 
lead time can be too short to take any actions and therefore provide no added value in terms 
of disaster reduction. Extension of lead-time can be achieved to some extent by combining 
weather forecasts, radar now-casts and observations and use fast forecasting models (e.g. 
simple regression models). In particular situations simple approaches, based on precipitation 
thresholds can provide significant benefits. Urban settings, in which flooding occurs due to  
heavy precipitation in combination with sealed surfaces are typical environments in which 
forecasting is limited due to short lead times. 

4.4 Importance of Forecast Verification 
 
Hydrologic Post-Processing methods are used to improve the reliability, skill and resolution of 
probabilistic hydrological forecasts. Forecast verification techniques may be applied to assess 
these attributes. As with the ensemble forecasting approach, these techniques have been 
developed primarily within the atmospheric sciences, but are often equally applicable to other 
disciplines, such as the hydrological sciences (Wilks, 2006). 

 
From the viewpoint of operational hydrologic forecasting, there are at least three types of 
verification of interest: 1) diagnostic, 2) trend and 3) prognostic. Diagnostic verification is 
concerned with assessing different attributes of ensemble forecasts, such as reliability, skill, 
resolution, discrimination, etc., to diagnose the performance of the forecast system and 
process so that cost-effective improvements may be made. Trend analysis is concerned with 
being able to discern and assess improvement in forecast quality over time. Prognostic 
verification is concerned with being able to provide the users of the forecast, such as the 
forecasters and the emergency managers, with verification information that may directly be 
used for decision making. Such verification information would come from translating and 
casting all available verification information into the context of the forecasting and decision-
making problem at hand. 
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Methods for verification of forecasts are well established (Wilks, 2006), and such verification 
provides clear insight into value and skill of the ensemble predictions at different lead times, 
giving valuable information to the forecaster in interpreting the forecast products.   

 
Skill measures for assessing ensemble forecasts include the Brier score, which measures the 
mean squared error in the probability space. The Brier skill score (BSS) measures skill 
relative to a reference forecast (usually climatology or naïve forecast).  The ranked probability 
score (RPS) is another way of determining the accuracy of the probabilistic forecast. RPS 
measures the squared difference in probability space when there are multiple categories 
(when there are only two categories RPS is equal to the BS). As with the Brier Skill Score, the 
Ranked probability skill score measures skill relative to a reference forecast. RPS applies 
when there is a discrete number of categories, but can be extended to continuous categories 
as the Continuous Ranked Probability Score (CRPS). CRPS is particularly attractive in that it 
does not depend on the particular choice of thresholds and that it allows comparative 
verification with single-value forecasts, for which CRPS reduces to absolute mean error. The 
relative operation characteristic (ROC) is a measure to assess the ability of the forecast to 
discriminate between events and non-events. The ROC curve plots the hit rate (POD) against 
the false alarm rate (POFD). The curve is created using increasing probability thresholds to 
make the yes/no decision (WMO, 2007). 

 
Ensemble verification as it is applied in operational hydrology today borrows heavily from the 
atmospheric science community. One of the distinguishing aspects of streamflow or 
precipitation ensembles is that they are multi-scale in nature, and hence should be verified 
over a wide range of spatio-temporal scales of aggregation. Unlike verification measures for 
single-value forecasts, most of the measures for ensemble forecasts are not expressed in 
physically meaningful units. While this poses little problem for diagnostic verification, it makes 
the use of verification information for real-time forecasting and decision making very difficult. 
This is an extremely important aspect of hydrologic ensemble forecasting; its promise can be 
realized only if the user is able to use the probabilistic information with ease and clarity in 
real-time decision making. 
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5 Requirements for a Hydrological Post-Processing System 

Workshop participants discussed practical requirements and/or principles that forecast 
systems should strive to meet and maintain, and agreed upon the following key elements:   
 

1.   Post-processing must achieve forecasts that are: 
o unbiased, reliable, and have the highest skill possible (which implies bias and 

spread correction and resolution improvement).  
o coherent (default to climatology when they have no skill) 

 
2.   Post-processing must be able to combine forecasts from multiple sources 
 
3.   Forecasters must understand the general principles of the post-processing techniques 

and/or be persuaded that they work – hence post-processing techniques must either 
be straightforward and accessible to forecasters who may only know basic statistics, 
or must be supported by ample training and demonstration material.   

 
4.   The post-processing system must be compatible with and/or offer an avenue for 

forecaster modification. 
 
5.   A post-processor must be able to transition easily between distribution representation 

and trace representation (both directions) and be consistent in both perspectives 
across time and space scales 

 
6.   Post-processing approaches should be extensible where possible from flow variables 

to related quantities, ie, stage, reservoir releases. 
 
7.   Post-processing techniques should be adaptive to incorporate lead-time, state (ie, 

high flows, low flows) and other dependencies, as warranted by the performance of 
the forecast system.  

 
8.   Although hindcasts may not be required to support some of the goals of a post-

processing system (e.g., a retrospective model run in lieu of hindcasts may supply 
sufficient statistical context for bias and spread correction), hindcasts are almost 
certainly required for verification of the post-processing approach’s performance.  
Hindcasts are therefore promoted as a requirement.  
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6 Science Questions 

The requirements and principles listed above reflect the immediate concerns and interests of 
operational forecasters, but the development of approaches to meet them depends on the 
exploration and resolution of a number of outstanding scientific issues.  For this reason, the 
workshop concluded by advanced a number of explicit science questions as potential focus 
areas of further study.  These included the following: 
 

1. How can forecasts from multiple models be combined? 
2. What is the role of updating vs. post-processing? 
3. To what extent are hydrologic hindcasts required, versus retrospective simulations of 

the type traditionally used for model calibration?  
4. What performance measures are appropriate for expressing the error characteristics 

of operational hydrologic ensemble forecasts?  For diagnosis of forecast system 
behavior? 

5. What is the value of using recent observations in post-processing, and what methods 
apply? 

6. What is the effect of temporal scale dependency on forecast skill and implications for 
post-processing techniques to produce reliable multi-scale predictive uncertainty. 

7. Can the effects of reservoir operations and upstream diversions be incorporated? 
8. Can we make ensemble hydrological simulations (with reliable predictive uncertainty) 

from single-value model simulations? 
9. Can we develop conditional post-processing techniques (that recognize differences in 

hydrological uncertainty for different hydrological conditions, and handle extremes)? 
10. What is the potential role of scaling theory in hydrological post-processing? 
11. What verification procedures/statistics are needed (or should be used) for different 

kinds of events?  What events should be verified? 
12. What is the potential role of wavelet and other variance decomposition techniques? 
13. What is the role of the forecaster? 
14. Are there differences in the way post-processing addresses continuous versus binary 

processes? 
15. What are the effects of non-stationarity (including climate variability and change as 

well as river basin changes) in applying post-processing techniques? 
16. What approaches are most appropriate for short, medium and long range forecast 

periods? 
17. Are there differences between post-processing stage versus flow forecasts? 
18. How can we account for possible levee failures in post-processing flow or stage 

forecasts? 
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7 Near-Term (Phase I) Objectives and Proposed Activities 

Given the broad scope of the science focus areas and potential supporting activities 
illustrated by the range of questions above, HUPP objectives and activities are broken into a 
near-term Phase 1 (leading up to the next HUPP meeting) and a longer-term phase to ensue 
following that meeting. The near-term objectives are the following: 
 

1. …the establishment of a handful of testbed datasets focusing on short to medium 
range flow prediction that can be used for the development, demonstration, evaluation 
and comparison of post-processing techniques.  The datasets will include 
retrospective simulations, observations, and hindcasts.   
 

2. … the development of methods which meet Requirements 1, 2, 5, 6 and 7 as detailed 
previously. 
 

3. …development and illustration of a concept of operations that addresses the role and 
implications of forecaster modifications. 
 

4. …the development of a bibliography related to post-processing techniques.   
 
 
To achieve these objectives, several targeted activities have been identified.  These activities 
advance our understanding of the objectives’ underlying science questions (note that science 
questions may apply to more than one activity and objective), as well as provide concrete 
results in the form of collaboration-supporting archives of methods and forecast-related 
datasets.  The activities are generally to be carried out within the larger HEPEX project 
testbeds, making use of knowledge and datasets of those testbeds.  

7.1 Activities 
 
Multi-model ensembles, Po Basin - Ezio Todini (Objectives 1, 2) 
Ensemble forecasts and re-forecasts from ECMWF, Florian Pappenberger 
Experimental Ensemble Forecasting System, XEFS – Dong Gjun Seo 
Bayesian Model Averaging, Rhine Basin – Albrecht Weerts, Paolo Reggiani 
Bayesian Ensemble & Deterministic Post processor, Rhine Basin– Albrecht Weerts & Paolo 
Reggiani 
Ensemble Data Assimilation Rhine and Meuse Basin (Hydraulic & Hydrologic) – Albrecht 
Weerts 
End user perspective, forecast datasets, Western US & BC Testbeds– Rob Hartman 
(Objectives 1, 3) 
Collation of model datasets – Feather Basin, Western US & BC Testbeds – Andy Wood 
(Objectives 1, maybe 2) 
NSSC, training?– Jonathan Gourley 
Information content of flashy catchments – Enda O’Connel 
Multi-model and challenging datasets, Peace River & Mica Basin – Sean Fleming 
Bayesian Ensemble Post processor (links NCEP & XEFS), Bayesian verification, Scientific 
conscience – Roman Krzystofowicz 
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Verification Methods & Performance Indicators (Micha Werner, Christel Prudomme) 
The activity targets methods suitable for the verification of both deterministic and probabilistic 
hydrological forecasting. Many of these methods have their foundation in the atmospheric 
sciences, but their applicability in verification of hydrological forecasts is not always equally 
obvious. The activity will align closely with the development of a verification framework/tools 
in associated work that can be easily applied to different datasets on the one hand, as well as 
allowing extension with verification methods on the other. 
 
Several datasets will be considered, 

 Datasets of longer range forecasts at daily time steps (UK? Christel?) 
 Datasets of short-medium range flow forecasts at synoptic time steps (NWS, 

CNRFC?) 
 Datasets of short range forecasts for fast responding basins (MAP-D Phase, 

Switzerland?) 
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8 Project Schedule 

 Complete draft science plan by Dec 31, 2009 
 Progress Reports from each project activity due every 6 months: 

o June, 2009 
o December, 2009 
o June, 2010 
o December, 2011 
o June, 2011 

 Web access to project information to be available – continuing 
 Follow-up Workshop ~ June 2010 To be decided.
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9 Longer Term Objectives and Expected Results 

The project expects to produce the following results: 
 

 Hydrological post-processing procedures produced by project participants will begin 
to be used by operational hydrological services, hydrological forecast users and/or 
private sector support organizations with 2 years. 

 Example operational applications of hydrological post-processing procedures will be 
available for users to review within 3 years. 

 A follow-up workshop to assess progress and plan for future activities will be held 
within 2-3 years. 

 Supporting data sets to support continued development and assessment of 
hydrological post-processing procedures will be developed and made freely available 
to the scientific community. 
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A Presentation HEPEX meeting Toulouse 15-18 June 2009 

 
To : HYD and OWB 
From :   
Subject :  Hepex meeting Tolouse 15-18 June 2009  
Date : 28 September, 2009 
Cc :   
Action:   
 

 
Between 15 and 18 of June 2009 the yearly HEPEX meeting was held, this time at the 
premises of Meteo France, Toulouse. Two Deltares representatives were present: 1) Albrecht 
Weerts and 2) Paolo Reggiani. Albrecht Weerts joined the meeting on June the 15th and 
stayed until Wednesday 17th. Paolo Reggiani joined the meeting on the 16th of June and 
stayed until Thursday the 18th.  

 
The programme of the workshop can be downloaded form the following URL: 
 
http://www.meteo.fr/cic/meetings/HEPEX09/HEPEX_Program_V1.pdf 
 
Paolo Reggiani held a presentation about Bayesian post processing on ensemble forecasts 
for the river Rhine forecasting system. The presentation was received very well and was 
followed up by a series of questions by workshop participants. 
 
During the afternoon of the 17th of June and the last day of the conference, the 18th of June 
Breakout groups were organized. The breakout groups focussed on forecast uncertainty, with 
a principal focus on meteorology. One particular breakout group focussed on streamflow 
uncertainty. Paolo Reggiani participated in the breakout groups and contributed to the 
scientific discussions. 
 
The conference closed on Thursday afternoon, the 18th of June. 
 
The slides of the presentations given by Paolo Reggiani are attached to this document 
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Aims:
• Probability density function of the expected flow, 

conditional on a given ensemble flow forecast (= 
predictive uncertainty).

• derive probabilities of occurrence of a water level level
conditional on a forecast.

Method used:
• Bayesian Revision

• use Bayesian inference to derive probability of 
occurrence of an event on the basis of past experience.

Motivation
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Forecasting locations along the Rhine river
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Bayes’ theorem for forecasting

a-priori distribution:
Prior knowledge about

upcoming flow
e.g. historic flow distribution

a-priori distribution:
Prior knowledge about

upcoming flow
e.g. historic flow distribution

likelihood function:
conditional distribution of 

(previous) forecasts,
for a given observation

likelihood function:
conditional distribution of 

(previous) forecasts,
for a given observation

a-posteriori distribution:
revised distribution of

upcoming flow, conditional
on a current forecast

a-posteriori distribution:
revised distribution of

upcoming flow, conditional
on a current forecast

Approach:
• Describe the joint distribution of observation and 

forecasts

Current forecast
Re-analysed forecasts (hindcast) 
and observations

n n n
n n

n

P H    P S | H
         =         P H | S

P S

priori likelihood Funktion

posteriori
totale Wahrscheinlichkeit

Hn … flow n- days
ahead

Sn … forecasted flow
n – days ahead
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Theory based on:
• Bayesian Theory of probabilistic forecasting

Krzysztofowicz(1999)
• Hydrological Uncertainty Processors (HUP) 

Krzysztofowicz (2000)

BEUP extensions here: 
• Medium range forecasts
• Ensemble flow forecasts

Development of a Bayesian Ensemble Uncertainty 
Processors (BEUP)
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2. Method

Short-range

Conditional a-priori
Current observations
Variance, Correlation

Unconditional
a-priori

Variance

yes no

h0 , h-1 hn

Determination of the
prior distribution
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2. Method

Short-range

Conditional a-priori
Current observations
Variance, Correlation

Unconditional
a-priori

Variance

yes no

h0 , h-1 hn

Determination of the
prior distributionobservations

hist. hydrograph

Categorize in months

Establish marginal distributions

Normal Quantile Transform

Priori
Variance,

(Correlation)

Offline parametrisation

N
or

m
al

 s
pa

ce
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2. Method

Estimation of the
likelihood function

Re-analysed forecasts/
hindcast

Observations

observations
hist. hydrograph

hindcast
observations

Categorize in months

Establish marginal distributions

Normal Quantile Transform

Priori
Variance,

(Correlation)

Likelihood
Variance,

Correlation

Offline parametrisation

N
or

m
al

 s
pa

ce
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2. Method

Derivation of the
posterior density in 
normal spaceobservations

hist. hydrograph
hindcast

observations

Categorize in months

Establish marginal distributions

Normal Quantile Transform

Priori
Variance,

(Correlation)

Likelihood
Variance,

Correlation

Update the a-priori
Family of posteriori densities

For all possible forecasts

Offline parametrisation

N
or

m
al

 s
pa

ce
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observations
hist. hydrograph

hindcast
observations

Categorize in months

Establish marginal distributions

Normal Quantile Transform

Priori
Variance,

(Correlation)

Likelihood
Variance,

Correlation

Update the a-priori
Family of posteriori densities

For all possible forecasts

Back transformation
of current posteriori

Ensemble of
posteriori 
densities

Current ensemble
flow forecast

Average
posteriori densities

Meta-posteriori /
predictive density

Offline parametrisation Online forecasting

2. Method
N

or
m

al
 s

pa
ce
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Cumulative distributions: 100+ years empirical data and 
modelled distributions
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Derivation of linear regression in the Gaussian space

Assumptions
• Linear relation between random variables in the normal space.
• Priori, Likelihood Function  and Posteriori Distribution are normally 

distributed.
Derive parameterized posterior distributions on the basis of 
property of conjugated distributions.
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BEUP – forecast example 9th August 2007
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BEUP – forecast example 9th August 2007
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BEUP –Forecast for the 9. August 2007
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Results: lead-time 3 days
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Results: Lead time > 3 days (7 days)
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Verification
period:

01.06.2007 –

01.10.2007

lead time in days
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Ranked Probability Skill Score
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8

1.
0

Probabilistic forecasts based on
ECMWF-EPS
meta-posteriori conditional on h0h0 1
meta-posteriori unconditional

Probabilistic forecasts based on
ECMWF-EPS
meta-posteriori conditional on h0 and h0 1
meta-posteriori unconditional

Comparison with ECMWF-EPS and different a-priori 
assumptions
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Thank you!

 
 
 
 
 
 
 
 
 
 




