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1  Introduction 

Quantifying the uncertainty in operational forecast models is important in decision making and 
water management decisions. Especially in situations, when competing forecast models 
provide a wide range of possible future situation, the reliable estimation of a most probable 
overall forecast and the quantification of its underlying uncertainties is most useful when 
having to meet eventually far reaching disaster management decisions in limited time. 

Forecasts typically differ from the realized outcomes, with discrepancies between forecasts 
and outcomes reflecting the forecast error uncertainty. This uncertainty can be significant and 
varies between the different model forecasts. The uncertainty also increases with forecast 
horizon or lead time. Ignoring this forecast uncertainty leads to non-optimal management 
decisions (Pielke, 2003). Focusing attention on a single deterministic forecast leaves an 
operator overly vulnerable to both costly mistakes and the wasting of resources.  

There is therefore a clear need for a method to quantify uncertainty of the forecast error. 
Several methods have been developed to do this (Beven, 1992, Krzysztofowicz 1999, 2000, 
Buizza, 1999). Here, the application of Bayesian Model Averaging (BMA) method is 
described, which produces a weighted overall probabilistic forecast from a collection of 
competing deterministic forecast models.  

To determine a correction for the bias and the uncertainty of an ensemble forecast a training 
period prior to the present forecast is used. In the training period, historical model forecasts 
are compared with observations. The spread within and between the model realizations is 
used to quantify the uncertainty of the overall forecast From the performance of each model 
over this training period a likelihood is derived that the current forecast is correct. This is used 
as a weight in the overall forecast.  

The BMA approach has been implemented in two operational forecasting systems: a River 
Stage Forecast System and a storm surge model of the North Sea. 

- In the Demonstrator Flood Control Room (DFCR), FEWS Rivieren is a water-level 
and discharge forecasting system for the Dutch rivers. The BMA is applied to the 
forecast locations St Pieter and Lobith. 

- An ensemble of storm surge model forecasts is collected in the MATROOS 
(Multifunctional Access Tool foR Operational Oceandata Services) servers at 
Rijkswaterstaat and Deltares. The forecasts are provided by institutions of the NOOS 
collaboration (North West Shelf Operational Oceanographic System). The BMA is 
applied to forecasts for several locations along the Dutch coast.  





 

 
1200379-003-ZWS-0001, 6 January 2010, final 
 

 
Operational River and Coastal Water Level Forecast using Bayesian Model Averaging 
 

3 of 23

2 BMA Theory 

Bayesian Model Averaging (BMA) is a standard statistical approach for post-processing 
ensemble forecasts from multiple competing models (Laemer, 1978). It has been widely used 
in social and health sciences and was first applied to dynamical weather forecasting models 
by Raftery  et al (2005).  

The basic principle of the BMA method is to generate an overall forecast probability 
distribution function (PDF) by taking a weighted average of the individual model forecast 
PDF’s. The weights represent the model performance, or more specifically, the probability 
that a model will produce the correct forecast. In a dynamic model application, the weights 
are continuously updated by investigating the performance of all compared models over a 
recent training period. In the current application, this training period is typically one to two 
weeks.  

The variance of the overall forecast PDF is the result of two components. The first component 
is associated with the spread between the model forecasts. The second component is the 
uncertainty of each individual model forecast. The magnitude of this latter component is also 
determined over the training period. 

The mean of the overall forecast PDF has a mean that is generally better than the individual 
model forecasts. Moreover, the overall forecast PDF provides a confidence interval, which is 
valuable for many practical applications. The variance of the overall forecast PDF is the result 
of two components. The first component is associated with the spread of the ensemble 
members. The second component is the variance of the individual model forecast PDFs. This 
latter component should also be determined over a training period, which can be different 
from the training period mentioned earlier. In the present study, identical training periods were 
used to determine both the BMA weight and the variance of the individual models.  

The BMA method assumes that the probability of an observation yobs(s,t) at location s and 
time t is given by a weighted sum over a number of probability distributions g(yfc(k,s,t)) from 
the different forecasting models k. 
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The forecast distribution of each individual model is assumed a normal distribution with 
variance σ(k).  
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The BMA algorithm finds the optimal values for w(k) and σ(k), such that the likelihood of the 
overall PDF (equation (1)) is maximal, given a set of historical forecasts and observations.  

The method does so by optimizing w(k) and σ(k) consecutively in an iterative scheme. The 
first step of the iteration starts with an initial guess for the weights w(k) and σ(k) for each of 
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the individual models and estimates the matrix z(k,s,t), which represents the probability that 
model k gives the best forecast for station s at time t.  
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The second step in the iterative algorithm is to determine the weights w(k) and variances σ(k) 
of each of the models k, based on the values of z(k,s,t): 

,
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where n is the number of observations in the training period (s,t). 
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The two steps are alternated to convergence, i.e. when w(k) and σ(k) no longer change after 
a recalculation of z(k). One can use a convergence criterion or alternatively use a fixed 
number of iteration cycles that should guarantee convergence. For the dynamical model 
applications, one can use the weights and variances from the previous time step as a starting 
point for the new iteration.  

A bias correction for the forecasts greatly improves the performance of the BMA. In fact, 
without bias correction the BMA is forced to make a linear regression without a constant. 
Adding a constant gives a much better result. The bias correction can be applied to the 
forecasts over the training period before  

After the iteration has converged an overall forecast mean for each of the stations can be 
computed from equation (1). Due to missing forecasts, the sum of the weights can deviate 
from unity. Therefore, a second normalization is applied to correct for missing forecast values. 
This amounts to giving the remaining models a larger weight if one model is missing.  

The overall forecast confidence intervals are computed by integrating the weighted sum of the 
individual forecast PDFs. For instance, the 10% quantile Q10(s,t_fc) is given by: 
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where the integral runs from h (water level) = - infinity to Q10.  

 
The observation and forecast data is not always complete in the sense that for locations 
and/or time steps data values are missing. The BMA method can deal with this: equations (4)  
and (5) allow for missing values in the data set (s,t). As long as there is at least one forecast-
observation combination in the training set a weight w(k) and a σ(k) can be determined. 
Missing data causes the effective training period to be shorter and could lead to problems if 
only very few data points remain. This is unlikely to happen, because missing data over 
longer periods of time are usually noticed and solved in an operational environment. 



 

 
1200379-003-ZWS-0001, 6 January 2010, final 
 

 
Operational River and Coastal Water Level Forecast using Bayesian Model Averaging 
 

5 of 23

3 Technical description 

3.1 BMA in River Forecasts for the Rhine implemented in FEWS RIVIEREN 
 
FEWS Rivieren is a Flood Early Warning System (Weerts, 2004) for the Rhine and the Meuse 
basin. FEWS Rivieren combines hydrological and hydraulic models with software for 
operational import, validation, interpolation and presentation of data. Operationally every 30 
minutes data from about 50 gauging stations in the Rhine and Meuse basins are updated. 
Every 60 minutes hourly meteorological observations are downloaded from servers at the 
national Dutch (KNMI) and German (DWD) weather services for more than 600 stations.  

For forecasting purposes, FEWS Rivieren uses output from four different numerical weather 
forecast models running at KNMI, DWD and the European Centre for Medium Range 
Weather Forecasts (ECMWF) (Table 3.1). This different weather information is used as input 
for the hydrological and hydraulic models resulting each time in forecasts for selected 
discharge and water level gauges.  

 

Table 3.1 Weather Forecasts used as input in FEWS RIVIEREN  
 

Model Name Temporal 
resolution 

[hours] 

Spatial 
resolution, 
grid size 

[km²] 

Members Lead Time 
[hours] 

Forecasts 
per day 

DWD-GME 3 40 x 40 1 174 1 

DWD-LM2 
(COSMO-EU) 1 7 x 7 1 78 2 

KNMI-HIRLAM 1 15 x 15 1 48 4 

COSMO-LEPS 3 10 x 10 16 120 1 

ECMWF-
Deterministic 3 40 x 40 1 240 2 

ECMWF- EPS  
Global Ensemble 3 40 x 40 51 336 2 

 

The method of Bayesian Model Averaging (BMA) is used to generate a probabilistic forecast 
from the ensemble of these four deterministic forecasts. The BMA module has been 
configured to generate forecasts at two gauging stations: at Lobith on the River Rhine and St 
Pieter on the River Meuse. 

The BMA method is implemented using the R Package ‘ensembleBMA’ (Fraley et al, 2009). 
The BMA package is treated as an independent module within FEWS. All current forecasts of 
one gauge and all historical forecasts within the training period are passed to the module, 
evaluated and the result is passed back to FEWS. The BMA method can be applied to water 
level or discharge data.  
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3.2 BMA in Coastal Storm Surge Forecasts implemented in MATROOS 
 
The Dutch coastline is highly exposed to flooding and erosion under extreme weather 
conditions. In order to foresee the thread of flooding, a highly sophisticated hydrodynamic 
model: the Dutch Continental Shelf Model (DCSM, reviewed by Gerritsen, 1994), for 
forecasting of water levels has been developed, as part of a warning system for extreme 
events. This system has been operational for the last decades and has served its purpose 
well.  

In order to protect low-lying areas in South East England and the German Bight, similar 
warning systems for extreme of water levels have been developed in the UK and Germany. In 
fact, all countries bordering the North West European Shelf have established an efficient 
storm surge prediction system. Recently, the national responsible agencies have agreed on a 
closer co-operation with the purpose of improving the storm surge forecasts and thereby the 
entire storm surge warning system.  

The NOOS consortium (North West Shelf Operational Oceanographic System) is a  
collaboration between partners from nine countries bordering the North Sea and North West 
European Shelf (Belgium, Denmark, France, Germany, Ireland, Netherlands, Norway, 
Sweden, and the UK). One of its goals is to develop an ocean observation and forecasting 
systems for the North West Shelf area, making use of already existing building blocks as 
much as possible. The NOOS partners are therefore exchanging real time operational data, 
such as water level observations and model forecasts.  

The method of Bayesian Model Averaging (BMA) is used to generate a probabilistic forecast 
from an ensemble of seven deterministic forecasts that originate from the NOOS community 
(Beckers, 2007). They are listed in Table 1. Two variations of the Dutch DCSM model were 
used: DCSM and DCSMK, the latter of which uses real-time observations and a Kalman filter 
to optimize the forecasts (Heemink, 1990).  
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Table 3.2  NOOS partners and the forecasting models used in this study 
 

NOOS Partner Country Model 
Bundesamt für Seeschifffahrt und 
Hydrographie  

Germany BSH 

Danish Meteorological Institute  Denmark DMI 
Management Unit of the North Sea 
Mathematical Models, Belgian Royal 
Institute of Natural Sciences   

Belgium MUMM 

UK MetOffice United 
Kingdom 

UKMO 

Norwegian Meteorological Institute  Norway DNMI 
 

Dutch National Institute for Coastal 
and Marine Management (RIKZ), 
and Koninklijk Nederlands 
Meteorologisch Instituut (KNMI) 

Netherlands DCSM, DCSMK 

 

The hydrodynamic models solve shallow water equations on a rectangular or curvilinear grid 
of several kilometres mesh size, which encloses the area of interest. Harmonic tidal 
components are imposed at the boundaries. For the DCSM this area is depicted in Figure 3.1. 
The other models in the NOOS community enclose different areas, but some include the 
Dutch coast line and can thus be used as forecasts in this study. Besides forecasting coastal 
water levels it is possible to forecast the surge data. 

 
Figure 3.1 Area captured by the DCSM model 
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The result of the calculation is a predicted water level at several stations along the coast. The 
stations that were used in this study are shown in Figure 3.2.  

 
Figure 3.2 Water level stations used in case study 
 

3.3 Differences of Forecasts with BMA for Coastal and River Locations 
 
The Bayesian Model Averaging approach can be applied to River stage and discharge 
forecasts as well as for coastal surge and water level forecasts. However, there are a few 
differences between the two implementations.  

The BMA method for coastal ensemble forecasts is implemented as a set of Perl scripts in the 
MATROOS system. For river forecasts is has been integrated in the FEWS using an available 
Package programmed in R (see chapters 4 and 5). 

Furthermore, the implemented BMA module is applied to river forecasts produced with two 
combinations of hydrologic and hydraulic models, which are run with a set of different 
meteorological forecasts. The model spread therefore mostly represents the uncertainty of 
the meteorological forecasts. The BMA approach for coastal forecast relies on 6 different 
hydrodynamic models, each with different meteorological inputs.  
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4 Configuration in FEWS for River Forecasts 

The present version of BMA within FEWS uses an R Package for Probabilistic Forecasting 
using Ensembles and Bayesian Model Averaging - "Ensemble BMA Package" (Fraley et. al, 
2009). This package is distributed under General Public License (version >= 2). Within FEWS 
version 2.7.0 is tested. It is recommended only to use this package version for running the 
BMA Module in Delft-FEWS. 

To run the BMA module in FEWS, first install the correct version of R. Copy the contents of 
Ensemble BMA ensembleBMA.zip and Chron chron.zip in the library directory of the R 
Package. 

The BMA package is implemented within a General Adapter Module of FEWS. The general 
concept is shown in Figure 4.1. 

 

 
 
Figure 4.1 Concept of the FEWS General Adapter 
 
Exported data, in this case forecasts and measured data calculated within the BMA training 
period, is passed to the BMA pre-processor and evaluated by the BMA module. The 
calculated results are processed by the Post Adapter and re-imported in FEWS. 
 



 

 

 
 
 
 
 

 
10 of 23 
 

Operational River and Coastal Water Level Forecast using Bayesian Model Averaging 

1200379-003-ZWS-0001, 6 January 2010, final 

BMA Pre-processor 
 
The BMA Module pre-processor creates the input for the ensemble BMA R Package. The 
Ensemble BMA R Package uses input as CSV format. The General Adapater configuration of 
the pre-processor is shown below. 
 
<executeActivity> 

 <command> 

  <className>nl.wldelft.fews.adapter.bma.BmaPreAdapter</className> 

 </command> 

 <arguments> 

  <argument>%ROOT_DIR%</argument> <!-- root directory --> 

  <argument>piOutputTimeSeries/bmainputL0.csv</argument> <!-- outputfile  --> 

  <argument>%TIME0%</argument>  <!-- Time0 --> 

  <argument>0</argument> <!-- Start of Lead time period in days  --> 

  <argument>parameters.txt</argument>  <!-- Parameter file –  

   each column represents a row --> 

  <argument>piOutputTimeSeries/forecast0.csv</argument>  <!-- Number of (partly) 

   complete Forecasts used for calculating the training period --> 

 </arguments> 

 <timeOut>4000000</timeOut> 

</executeActivity> 
 

The above configuration has to be repeated for each lead time to be evaluated. The names of 
the output files have to be adjusted accordingly changed. 
 
BMA Module 
 
The BMA Module itself makes use of the ensembleBMA package written in R (see above). 
The General Adapater configuration for running this module is shown below. 
 
<executeActivity> 

 <command> 

  <executable>$R_EXE$</executable> 

 </command> 

 <arguments> 

  <argument>--vanilla</argument> 

  <argument>%ROOT_DIR%/config/BMA_FEWS_Script.R</argument> 

  <argument>%ROOT_DIR%/piOutputTimeSeries/bmainputL0.csv</argument> <!-- inputfile  -

-> 

  <argument>%ROOT_DIR%/piOutputTimeSeries/bmaoutputL0.qan</argument> <!-- outputfile 

qauntile --> 

  <argument>%ROOT_DIR%/piOutputTimeSeries/bmaoutputW0.wie</argument> <!-- outputfile  

weights--> 

  <argument>%ROOT_DIR%/piOutputTimeSeries/bmaoutputB0.bia</argument> <!-- outputfile  

bias--> 

  <argument>0</argument> <!- input lead time in days (not used) --> 

  <argument>%ROOT_DIR%/piOutputTimeSeries/forecast0.csv</argument> <!-- inputfile 

Forecast Length --> 

 </arguments> 
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 <timeOut>1000000000</timeOut> 

 <overrulingDiagnosticFile>%ROOT_DIR%/rscript.log</overrulingDiagnosticFile> 

</executeActivity> 

 

 
Again the above configuration has to be repeated for each lead time to be evaluated. 
 
Please note: $R_EXE$ is attribute which is defined in global.properties file as 
"R_EXE=C:/Program Files/R/R-2.7.0/bin/Rscript.exe" 
 
BMA Module R Script 
 
The contents of BMA Module R script is briefly described as below. 
 
--- Read Arguments  

--- Check if files exists 

--- Read Forecast Length file 

--- Load Ensemble R  

--- Read input data 

 

-- Assign labels (hard coded - similar to parameter file) (R-Code - Make sure to update 

this line for your model) 

labels <-c("SBK_MaxLob_DWD_GME_Q.fs","SBK_MaxLob_DWD_LM_Q.fs",...............) 

 

--- Perform ensembleBMA analaysis  (R-Code) 

enRData<-ensembleData(forecasts=rdata[,labels], dates=rdata$TIME, observations=rdata$OBS) 

trainingrule=list(length=forecastlen,lag=1) 

rDataBMA <- ensembleBMA(enRData,model="normal",trainingRule=trainingrule, control = 

controlBMAnormal(maxIter=20)) 

 

--- output Quantile to File 

--- output Wieghts to File 

--- output Bias to File 

 

 
Please make sure that the line  
"labels <-c("SBK_MaxLob_DWD_GME_Q.fs", "SBK_MaxLob_DWD_LM_Q.fs", ......)"  
is changed according to the number of models used. 
 
Output of each BMA Module run are 3 files, with the following extensions: 
 
*.wei -> weights 
*.bia -> bias 
*.qan -> quantiles - value for the next first forecast - (used only for checking) 
 
Format of Weights file (*.wei): 
forecast-date, weight for model one, weight for model 2 , .... etc. .... , sigma 
 
Format of Bias file (*.bia): 
B value for model 1, B value for model 2, ... etc... 
A value for model 1, A value for model 2, ... etc ... 
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BMA post-processor 
 
The BMA Module post-processor evaluates the output of BMA package and creates all files to 
be imported into the FEWS database. The General Adapater configuration of the post-
processor is shown below. 
 
<executeActivity> 

 <command> 

  <className>nl.wldelft.fews.adapter.bma.BmaPostAdapter</className> 

 </command> 

 <arguments> 

  <argument>%ROOT_DIR%</argument> <!-- root directory --> 

  <argument>piOutputTimeSeries</argument> <!-- outputDirectory  --> 

  <argument>%TIME0%</argument>  <!-- Time0 --> 

  <argument>3</argument>  <!-- max lead time in days --> 

  <argument>parameters.txt</argument> <!-- Parameter file - each column represents a 

row --> 

 </arguments> 

 <timeOut>4000000</timeOut> 

 <overrulingDiagnosticFile>%ROOT_DIR%/piDiagnostic.xml</overrulingDiagnosticFile> 

</executeActivity> 

 

 
The postprocessor uses the output of BMA Module run (i.e. quantiles, weights and bias) and 
the input to generate new forecasted timeseries + quantiles (10, 25, 75 and 90) timeseries. 
 
Generating Forecast Timeseries 
 
The forecasted time series are generated using the weights, sigma and bias correction. 
 
    FOR EACH models_i  (skip missing forecasts) 

 

       BMA += weight_i * (bias_a_i * forecast_i + bias_b_i) 

       sumweights += weight_i 

 

    END 

    BMA = BMA / sumweights 

 

 

    Quantile_10 = BMA - 0.842 * sigma 

    Quantile_25 = BMA - 0.675 * sigma 

    Quantile_50 = BMA  

    Quantile_75 = BMA + 0.675 * sigma 

    Quantile_90 = BMA + 0.842 * sigma 
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5 Configuration in MATROOS for Coastal Storm Surge 
Forecasts 

The algorithm is run by a collection of Perl modules described below. The ‘main.pl’ script is 
the central program that calls the other modules.  

 

main.pl - Parameter settings 

The ‘main.pl’ script starts off by defining a number of global parameters. They are stored in a 
structure ‘BMA’: 

my %BMA = ( 

   'models'               => ['knmi_noos','knmi_noos_kalman','bsh_oper', 

             'mumm_oper','dmi_oper','dnmi_oper', 'ukmo_oper'], 

   'locations'            => ['Delfzijl','HoekVanHolland','Vlissingen', 

                    'Den Helder','Harlingen'], 

   'start_training'       => 200709250000, # Start of the training period 

   'stop_training'        => 200710020000, # end of the training period 

   'start_forecast'       => 200710020000, # start of the forecast period 

   'stop_forecast'        => 200710040000, # end of the forecast period 

   'forecast_horizon'     => 1440,         # minimum forecast horizon     

   'max_forecast_horizon' => 6000,         # maximum forecast horizon 

   'interval'             => 10,           # minutes 

   'n_iterations'         => 12,           # number of iterations  

   'uncertainty_low'      => 0.05, 

   'uncertainty_high'     => 0.95, 

); 

 
The array ‘models’ defines the models that will be used in the BMA forecast. The array 
‘locations’ defines the locations that will be considered. Note that only a single weight is 
calculated for each model. If we include two different locations, we will get a forecast that 
gives, on average, the best result for both locations. In the current implementation, however, 
the BMA is run for each location separately.  

The parameter ‘start_training’ defines the start of the training period. This may include 
forecasts from earlier times, giving a forecast for a time just within the training period. The 
parameter ‘stop_training’ defines the end of the training period. For most operational 
applications this will be the current time, including the most recent observations in the training 
period. The length of the training period can be varied to optimize the BMA forecast.  

The parameter ‘start_forecast’ defines the start of the forecast. For most operational 
applications this will be the current time. The parameter ‘stop_forecast’ defines the end of the 
forecast. It can be any length, although the maximum forecast horizon of the models is a 
sensible limit.  

The parameter ‘forecast_horizon’ defines a lower limit to the time (in minutes) between the 
issue of the forecast (the analysis time) and the forecast time (the time for which a water level 
is predicted). A forecast horizon of 1440 (24 hrs) means that the most recent forecast at 24 
hrs before the forecast from all models was taken. The average forecast time is therefore 
more than 24 hrs, depending on the forecast rate of the model. For 12 hr update rates the 
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average forecast time is 30 hrs. Some test calculations were done on 12 hr forecast, giving 
similar results. The parameter ‘max_forecast_horizon’ defines the maximum forecast time (in 
minutes) for any of the models. It is used only to select forecasts that could be relevant for the 
training period. For the actual training, the most recent forecast is used.  

The parameter ‘nr_iterations’ defines the (fixed) number of iterations in the expectation-
maximization scheme. In the current setup, we found that around 10 iteration cycles are 
generally sufficient and we use 12 cycles for the production runs. The parameters 
‘uncertainty_low’ and ‘uncertainty_high’ define the bounds of the confidence interval.  

The above parameter settings in the ‘main.pl’ script are default values. They can be overruled 
in a ‘bma.inc’ file, which has the following format: 

 

$BMA{'start_training'} = '200709250600'; 
$BMA{'stop_training'}  = '200710020600'; 
$BMA{'start_forecast'} = '200710020600'; 
$BMA{'stop_forecast'}  = '200710040600'; 
$BMA{'locations'}      = ['Delfzijl']; 

 

If the ‘BMA.inc’ file is non-existent. The default values will be used.  

 

main.pl - Calculations 

Next, the actual calculation is started. This is done by calling a routine called 
‘BMA_forecast’. This routine will return a number of hash tables:  

• The array “forecast” contains the BMA mean forecast (expectation value). The 
hash key is “<location>:<minutes>”, where minutes is the number of minutes 
since January 1st 2000. Model and location are entries from the arrays 
BMA::models and BMA::locations. 

• Array “h_fc” contains the model forecasts. Hash key: 
“<model>:<location>:<minutes>”. 

• The array “bias” contains the bias over the training period per model. The hash key 
is “<model>:<location>“. 

• The array “sigma” contains the computed spread for each model forecast, 
calculated over the training period. The hash key is “<model>“. 

• The array “weight” contains the computed BMA weight for each model, calculated 
over the training period. The hash key is “<model>“. 

 
my ($forecast,$h_fc,$bias,$sigma,$weight) = BMA::BMA_forecast(\%BMA); 

 

The routine ‘BMA_forecast’ is described in detail in the next section. 

 

After this, the confidence interval is computed numerically in the routine 
compute_uncertainty. This returns a hash table confidence, the key is: 
“<lower,upper>:<location>:<minutes>”. The confidence interval is, in fact, two new 
time series: one for the lower bound and one for the upper bound.  
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my %confidence = BMA::compute_uncertainty($uncertainty_low,$uncertainty_high, 
                 \%BMA,$forecast,$h_fc,$bias,$sigma,$weight); 

 

BMA_forecast - Calculations 

The routine ‘BMA_forecast’ starts by reading observations and forecasts from the 
MATROOS database: 

 

  my $dtg1                 = $BMA{'start_training'}; 
  my $dtg2                 = $BMA{'stop_training'}; 
 
  my ($observed,$nr_obs) = readdata::readMatroos($locations, 

['observed'],$dtg1,$dtg2,-1,-1,''); 
  my ($h_fc,$nr_fc) = readdata::readMatroos($locations,$models,$dtg1,  

$dtg2,$forecast_horizon,$max_forecast_horizon,''); 

 

The observations and forecasts are stored in ASCII files, carrying the name of the analysis 
time and the name of the model (or ‘observed’ for the observations. The extension can be 
either sealev or surge, depending on the quantity that we are training on.  

Next, the bias is computed for each model over the training period (compute_bias), the 
BMA EM-algorithm is run (compute_weights) and the BMA forecast is made, using these 
weights (make_forecast).  

 

  %bias   = compute_bias($BMA,$observed,$h_fc); 
  ($sigma,%weight) = compute_weights($BMA,$observed,$h_fc,\%bias); 
  %BMA_fc = make_forecast($BMA,\%weight,$h_fc,\%bias); 

 

The result is stored in a table called BMA_fc, which is returned to ‘main.pl’.  

 

main.pl - Output 

Finally, the ‘main.pl’ script writes the output to file. Two new directories are created for the 
lower and upper bounds of the confidence interval.  

 

`mkdir -p bma_$percentage_low`; 
`mkdir -p bma_$percentage_high`; 

 

Then, for each location, a file is created with the name <location>.sealev. Some header 
information is printed: "# BMA $percentage_low % confidence\n"; Next, the time series 
from start_forecast to stop_forecast is printed. Finally, the files are closed.  

 

foreach my $s (@locations) { 
   my $s1 = $s; 
   $s1 =~ s/\s//g; 
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   open(BMA05,">bma_$percentage_low/$s1.sealev") or die 
             "Could not open output file: $!\n"; 
   open(BMA95,">bma_$percentage_high/$s1.sealev") or die 
             "Could not open output file: $!\n"; 
 
   print BMA05 "# BMA $percentage_low % confidence\n"; 
   print BMA95 "# BMA $percentage_high % confidence\n"; 
 
   for(my $t=$start_forecast; $t<$stop_forecast; $t+=$interval) { 
     $dtg = dtg::min2dtg($t); 
     my $fc_low = $confidence{"lower:$s:$t"}; 
     my $fc_up = $confidence{"upper:$s:$t"}; 
 
     print BMA05 "$dtg  $fc_low\n"; 
     print BMA95 "$dtg  $fc_up\n"; 
   } 
   close (BMA05); 
   close (BMA95); 
} 

 

dtg.pm - Time units and conversions 

The observation and forecast files are identified by a dtg (date-time-group). A dtg is a 10-digit 
number that contains a year, month, day, hour and minutes. For example: 200710030910 
represents October 10, 2007, 10 minutes past 9 AM. Within the BMA program, this dtg is 
converted to an integer for convenience reasons. This integer is the number of minutes since 
January 1st 1970 (Julian time). This reference date can be altered to another date if 
necessary.  

 

The dtg and number of minutes can be converted to each other by two routines in the module 
dtg. 

 

sub dtg2min($) # convert gregorian time to julian minutes 
sub min2dtg($) # convert julian minutes to gregorian time 

 

normal.pm – Normal distribution 

Finally, the module ‘normal.pm’ contains a function ‘normal_PDF’ that calculates the value of 
the Gaussian distribution. This is used at several steps in the calculation routines.  
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6 Performance of BMA 

6.1 Off line testing of BMA with FEWS Rivieren 
 
A set of nine different waterlevel forecasts has been used to test the BMA approach at the 
Rhine gauge Lobith (Beckers et al, 2008). For this purpose four-day forecasts were produced 
with FEWS Rivieren with a combination of 4 different meteorological models (HIRLAM, 
ECMWF-DET, DWD-LM, DWD-GME) and 2 different hydrological-hydraulic models (HVB, 
HBV/SOBEK) plus one statistical forecast (LobithW). In order to evaluate the performance of 
the method and to optimize the length of the training period, forecasts throughout 2007 with 
varied lead times between 1 and 3 days were evaluated. The length of the training period was 
varied between 1 and 4 weeks. 
 
The BMA mean forecast generally results in a lower root mean squared error (RMSE) than 
that of the individual model forecasts. In the evaluated period, the BMA RMSE was 
comparable to the lowest RMSE of the individual models.  As shown in Table 6.1 below, the 
model with the lowest RMSE varies depending on the lead time, whereas the BMA RMSE is 
consistently optimal. 
 
Table 6.1 RMSE of the individual forecast models and the BMA mean forecast for different lead times, with the 

lowest RMSE’s highlighted. All calculations used a training period of 28 days 
 

Forecast Meteorological 
input 

Hydrological/ 
hydraulic model 

RMSE  
(24-48 hrs) 

RMSE  
(48-72 hrs) 

RMSE  
(72-96 hrs) 

1 HIRLAM HBV 0.252 0.329 0.428 
2 ECMWF HBV 0.249 0.313 0.379 
3 DWD-LM HBV 0.249 0.302 0.347 
4 DWD-GME HBV 0.249 0.306 0.345 
5 HIRLAM HBV/SOBEK 0.196 0.258 0.381 
6 ECMWF HBV/SOBEK 0.196 0.250 0.340 
7 DWD-LM HBV/SOBEK 0.195 0.238 0.314 
8 DWD-GME HBV/SOBEK 0.195 0.239 0.303 
9 LobithW (statistical model) 0.176 0.250 0.366 

BMA mean forecast  0.179 0.235 0.307 
 
Figure 6.1 shows an example of a BMA forecast compared with observations, along with the 
10% lower and upper bounds on the confidence interval. Separate training was done for 
different lead times. Note that the uncertainty increases for longer lead times and that the 
observations fall within the confidence interval at (almost) all times.  
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Figure 6.1 BMA forecast, three days, two days and one day before a water level peak in March 2007,  

with upper and lower confidence bounds, compared with water level observations 
 

In the offline test implementation, a confidence level of 80% was specified, which should 
represent the actual probability of an observation falling within the confidence interval, with 
10% of the observations greater than the upper confidence level and 10% less than the lower 
confidence level. In the 2007 test period, this proved to be approximately the case. Table 6.2 
presents the actual percentage of 2007 forecasts falling outside the confidence intervals, for 
the four different training periods. Based on these results, it appears that a training period of a 
minimum of three weeks should be used in the BMA method at Lobith. The agreement 
between expected and observed water levels outside of the confidence interval demonstrates 
the usefulness of the BMA method in gauging the uncertainty of a given forecast.  
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Table 6.2 Percent of observations falling outside the 80% confidence interval 
 
Training Period 

(days) 
Average Width of 

80% C.I.* (m) 
> Upper C.I.* < Lower C.I.* Outside the C.I.* 

7 0.52 12.3% 17.8% 30.1% 
14 0.61 11.7% 13.0% 24.7% 
21 0.62 11.8% 9.4% 21.2% 
28 0.61 11.5% 9.7% 21.2% 

* C.I. = confidence interval 
 

6.2 BMA within the DFCR FEWS Rivieren 
 
The Demonstrator Flood Control Room (DFCR) is an operational research platform for 
hosting, testing and demonstrating of products developed within the Flood Control 2015 
research and development program. During the operational testing of BMA within the DFCR 
FEWS Rivieren, it was noticed that the performance was not as good as expected from the 
calibration tests offline. The BMA adapter was rigorously checked and a bug was resolved. 
Also during this testing phase, it was noticed that the bias correction is not always functioning 
as it should (see Figure 6.3). Since December 2009, this improved version of the BMA (Delft-
FEWS 2009.002) is used within the DFCR. The noticed problem with the bias correction is 
still unresolved. Figures 6.2 and 6.3 show some screenshots of the display currently used 
within the DFCR. 

 

 
Figure 6.2 Example display BMA in DFCR. showing the 50% and 80% confidence limits together with the mean 

BMA estimate 
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Figure 6.3 Example display of current non optimal BMA results in DFCR. showing the 50% and 80% confidence 

limits together with the mean BMA estimate 

6.3 BMA within the MATROOS System 
 
A test version of the BMA module is running within the VMWare version of MATROOS since 
October 2007. The BMA probabilistic forecasts (5, 50 and 95% levels) are being issued as 
additional time series for the MATROOS database. Figure 6.4 shows an example of the 
MATROOS system with the BMA forecast (mean and confidence interval) as three additional 
time series.  

 
Figure 6.4 The MATROOS surge ensemble prediction system with the BMA forecast (5, 50 and 95%) as three 

additional time series (orange) 
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7 Conclusions and recommendations 

The BMA method is a promising method for generating probabilistic water level forecasts 
from an ensemble of model forecasts. The main added value of the BMA method is the 
possibility to produce a probabilistic forecast, rather than an additional deterministic or mean 
value forecast. Confidence limits can be calculated and displayed, supplying the operational 
forecaster on duty with valuable additional information. 

The method can be used within the operational MATROOS storm surge and sea level 
forecasting environment using the described Perl-scripts to predict water levels, making use 
of the information provided by NOOS partners. It can also be used within a FEWS system 
providing river level forecasts from different models using the R BMAensemble package. 

In the DFCR (Demonstrator Flood Control Room) the BMA method has been running with 
FEWS Rivieren since December 2009. The uncertainty bands for the water levels at Lobith 
and St Pieter seem reasonable. However, the bias correction of the implemented R package 
sometimes produces unexpected results. This needs to be investigated further. 

In general, the input ensemble members for the BMA method should be selected with care. If 
the spread between the models is small compared to the overall uncertainty, this may indicate 
that the representation of the model error is incomplete. In this case, the resulting confidence 
intervals will be too small (Mylne, 2000). 

Another issue worth mentioning is the natural ‘jumpiness’ of meteorological weather 
forecasts. This is normally caused by important changes in the analysis from one cycle to the 
next. This behaviour could serve as a simple ensemble forecast system. If the results change 
dramatically after an analysis update, this suggests a large uncertainty in the meteorological 
forecast. On the other hand, in case of consistent consecutive meteorological forecasts the 
BMA method will produce narrow confidence bands, which may not be applicable to future 
forecasts. This idea is left for future research. 
 
Further research also needs to be performed to determine how the probabilistic forecast can 
be optimized to provide to the decision-maker with a superior forecast with reliable confidence 
intervals. Increasing the value of the BMA method will depend not only on fine-tuning the 
technical aspects, but also on presenting the forecast uncertainty in such a way that it can be 
readily used by decision makers. 
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