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1  Introduction 

1.1 Background 
 

Robust forecasts (unbiased and skilful) are vital in providing a comprehensive flood warning 
service to people and businesses at risk from flooding. For fluvial and storm surge flood 
forecasting, rainfall–runoff, flow routing, 1D-hydraulic and 2D-hydraulic models are often 
combined into model cascades and are run automatically in operational flood and storm surge 
forecasting systems. 

Currently, the outputs from these models are often deterministic with one model run delivering 
the flood forecast which is assumed to be the best representation, although Forecasting Duty 
Officers assess and advise on the uncertainty in forecasts based on experience and 
judgement. However, it is widely known that the accuracy of flood forecasts can be influenced 
by a number of factors, such as the accuracy of input data, and the model structure, 
parameters and state (initial conditions). Having a sound understanding of these modelling 
uncertainties is vital to assess and improve the flood forecasting service. 
 
Real-time flood forecasting applications often make use of a cascade of inter-linked 
hydrological and, in some cases, hydrodynamic models, embedded in a data-management 
environment such as that of FEWS Rivers Rhine and Meuse.  Model cascades (or integrated 
catchment models) are typically run in two principal modes of operation: 
 

i) a historical mode – in which models are forced by hydrological and 
meteorological observations over a limited time period prior to the onset of the 
forecast (e.g. to initialise model stores) 

 
ii)  a forecast mode – in which models are run over the required forecast lead 

time, forced by outputs from other models, with the internal model states at 
the end of the historic run taken as initial conditions for the forecast run 

 
Increasingly, models are forced using meteorological forecasts of precipitation and 
sometimes other variables, such as air temperature (e.g. where snowmelt is an issue) and 
evaporation, in addition to the use of forecasts from river locations further upstream.  
 
Figure 1.1 illustrates these different modes of operation, and how they differ from the much 
longer period of records which are typically used in model calibration. 
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Figure 1.1 Illustration of historical and forecast modes of operation 
 
In each of the steps in the model and data processing chain, uncertainties can be attributed to 
the model inputs, the model structure, internal model states and model parameterisation, with 
the total predictive uncertainty accumulating in the forecast outputs (e.g. Beven 2009; 
Pappenberger et al. 2007).  
 
Depending on the lead-time at which forecasts are issued in comparison to the hydrological 
response time, the dominant uncertainties will lie in the inputs derived from observations, the 
rainfall-runoff and routing models, or, if applicable, the hydrodynamic models, and from the 
uncertainty in rainfall and other meteorological forecasts (if used).  The various time delays in 
the warning process also need to be considered, such as the time taken to collect data, age 
of external forecasts, run models, post-process results, take decisions and issue flood 
warnings, as discussed later. 
The process of making a flood forecast can therefore be subdivided into three problems (e.g. 
Moll, 1986): 
 

• Estimation of the actual state of the basin at the start of the forecast, which 
consists of interception storage, soil moisture storage, groundwater storage, 
other possible storages (e.g. snow storage), and the water levels in rivers, 
reservoirs, wetlands and lakes; 

 
• Modelling of the movement of water during the period covered by the forecast 

lead-time through the whole cascade of rainfall-runoff, flow routing, and 
hydrodynamic models; 

 
• Forecasting of the model inputs during the selected lead-time. These can 

consist of meteorological inputs, but also inflows from locations further 
upstream or at other model boundaries (for instance tidal influences, 
abstractions and discharges). 

 
 
For an individual model component within an integrated catchment model, these three 
problems result in uncertainties / errors in the forecast consisting of: 

• Initialisation Errors: due to errors in the observations and their spatial and/or 
temporal interpolation used to estimate precipitation, potential evaporation 
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and temperature, discharge or other boundary conditions in the historical 
mode of operation; 

 
• Model(ling) Errors: arising from approximating parameterisations/model 

structures, uncertain model parameters, model resolution limitations, 
uncertain structure operating/management rules, etc. 

 
• Forcing Errors: errors which occur in the forecast mode of operation when a 

model component is forced with an input derived from another model with its 
own Initialisation and Model Errors; for example a Numerical Weather 
Prediction model or the hydrological or flow routing outputs at a flow 
forecasting point further upstream. 

 
Note that the initialisation errors are usually not independent from the model errors because 
normally a model is used to derive the estimate of the actual state of the basins; for instance 
via data assimilation or just driving the model (cascade) in historical mode until the start of the 
forecast to estimate soil moisture storage and other variables of interest. 
 
Within an Integrated Catchment Model, these errors combine as illustrated in Figure 1.2. This 
figure shows the picture for the whole modelling cascade, including the hydrodynamic and 
coastal components (if relevant). Initialisation and modelling errors occur in each of the 
different components resulting in forcing errors in the downstream model. The arrows indicate 
the source of the forcing error, modelling error(s) and initialisation error(s) in the model(s) 
higher up in the model cascade.   
 

  

  
Figure 1.2 Flood and storm surge forecast model cascade indicating the sources of the errors in the 

forecasts. The arrows indicate the errors in the forcing (when looking at it from the viewpoint of 
the receiving model cascade component) or model output (when looking at it from the viewpoint 
of the producing model cascade component) 
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The errors in the forecast model cascade need to be quantified and/or reduced for the 
following reasons: 
 

• to provide more accurate forecasts; 
 

• to provide accurate information regarding the uncertainty of the forecast (and, 
if possible, unbiased and skilful estimates); 

 
Quantification can be seen as providing a description/method to quantify the uncertainties 
and typically involves the use of forward uncertainty propagation techniques to give an idea of 
the uncertainty in the forecast. Of course, where suitable information is available, it is 
preferable to first reduce the uncertainties. This can be achieved by two key approaches (1) 
making use of recent observations (data assimilation) and (2) applying adjustments based on 
the historical performance of the forecasts made using the model cascade (forecast 
calibration). 
 
Data assimilation is a feedback system in which the forecast is conditioned on all available 
information that is available at the time the forecast is made (the forecast origin or ‘time now’). 
This includes information on the current state of the system, but also entails past performance 
of the forecast system (possibly further conditioned on secondary information such as the 
time of year, synoptic situation etc.).   
 
Often, the term data assimilation is used to describe the use of real-time recent data to 
improve forecasts, whilst the term conditioning (on historical data) or forecast calibration is 
used to describe methods for improving forecasts based on the historical performance (i.e. 
not taking account of any real-time data which may be available). Alternative terms in flood 
forecasting include real-time updating or real-time adaptation. 
 
Figure 1.3 shows schematically where these different approaches interact with the forcing 
errors, the rainfall-runoff, flow routing and hydrodynamic models, and the forecast produced 
by the end-to-end model cascade.  
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Figure 1.3 Flood and storm surge forecast model cascade indicating the sources of the errors in the 

forecasts. The arrows indicate the errors in the forcing (when looking at it from the viewpoint of 
the receiving model cascade component) or model output (when looking at it from the viewpoint 
of the producing model cascade component), and where and with which methods uncertainty 
can be reduced and quantified in the model cascade (A) Meteorological Forecast Calibration, (B) 
State Updating, (C) Parameter Updating, (D) Forecast Calibration/Output Updating 

 
These four operational approaches to updating which are described in the figure are more 
general forms of the widely used terminology in hydrological forecasting of input updating, 
state updating, parameter updating and output updating (e.g. Refsgaard, 1997; Serban and 
Askew 1991). 
 
These four approaches to uncertainty quantification and reduction are further described in 
(Weerts and Beckers, 2009; Weerts et al., 2010).  
 

1.2 Description of topic and objectives of the FC2015 PhD project 
 
This project, carried out within the FC2015 program, focuses on reduction and quantification 
of uncertainties in flood forecasting through data assimilation in distributed hydrological 
models. Currently, most forecast offices use a lumped hydrological model (with deterministic 
or manual state updating) for forecasting, but there is a clear tendency to move to distributed 
models for hydrological forecasting. To be ready for the future, strategies should be 
developed how to perform (ensemble) data assimilation using these models in a real-time 
setting. This requires detailed knowledge of input uncertainty, model uncertainty and forcing 
uncertainty and how these influence the data assimilation and subsequently the (ensemble) 
forecast. 
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Key goals of this project are therefore (1) to identify and quantify the sources of the input, 
model, and forcing uncertainties, (2) to show how these uncertainties propagate through the 
distributed hydrological model(s) used for forecasting, and (3) how (distributed) measured 
data can be used to reduce the uncertainty and how it affects the hydrological forecast (i.e. 
skill and bias) and (4) to determine which and how data assimilation methods can be best 
used in an operational forecast setting.  
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2 Scientific objectives 

Initialisation uncertainty is caused by uncertainty in the model input and the model itself 
during the historical mode. Within an ensemble data assimilation environment, given the 
uncertainties of the model input, the uncertain model itself (i.e structure and/or parameters) 
and the uncertain measurements used for updating, the model states are adjusted to 
approximate the true state of the physical system. As a result, the initialization uncertainty will 
be reduced and an estimate of the uncertainty of the model forecasts can be provided. 

2.1 Input Uncertainty Specification 
 
It is clear that in ensemble data assimilation the spread in the ensemble members is 
determined by the specified errors in the model structure, the historical input data and 
discharge data. One needs to make sure that realistic assumptions for these errors are made. 
For average areal rainfall derived in operational flood forecasting systems (with a limited 
number of rainfall stations), uncertainties can vary of the order of ±0–50% (Willems, 2002), 
but this range is often chosen as 0–15% (E. Todini, personal communications). The use of 
areal precipitation estimates derived from radar might give a better handle on specifying 
realistic rainfall uncertainties especially when using distributed hydrological models. 
 
Emerging Questions: 
-How can the input uncertainty (during historical mode, see Figure 1.1) be specified for both 
lumped and distributed hydrological models? 
- Can realistic error bounds be derived for radar rainfall fields? 
-Is there added value of radar rainfall data versus precipitation gauge data in a data 
assimilation scheme using lumped and  distributed hydrological models? 

2.2 Model Uncertainty Specification 
 
Hydrological models can be divided according to Wagener et al. (2004) and Dooge and 
O'Kane (2003) into three groups, as follows:  

 
(1) Metric (empirical, black box): Metric models are purely based on the information 
derived from the data and no prior knowledge about catchment behaviour is needed. 
Artificial Neural Networks (ANN) and Transfer Functions (TF) represent an example of 
this type of models. These models are usually spatially lumped, in other words the 
catchment is looked up on as a single unit. 
 
(2) Parametric (conceptual, grey box): Parametric models aim to satisfy the water 
balance of the catchment, which is represented by a system of reservoirs. The 
storages are filled by fluxes such as precipitation, infiltration, percolation and emptied 
through evapotranspiration, discharge, drainage. The model parameters are often not 
measurable in the field and needs to be derived in a calibration procedure. These 
models are either lumped, quasi-lumped (i.e. segmentation of catchment onto smaller 
sub-catchments) or fully distributed.  
 
(3) Mechanistic (physically based, white box): Mechanistic models are described by 
the conservation of mass, momentum and energy equations. They became practically 
applicable in 1980s with computer power availability. Nevertheless, data demand, 
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scale-related problems and over parameterization are drawbacks of mechanistic 
models. 

 
Historical overview of rainfall runoff models ranging from empirical to physically models is 
given by Todini (2007). A detailed description of more than 20 hydrological models, which are 
used all over the world is summarized in Singh (1995). 
 
Currently, most forecast offices use lumped parametric models (PDM, HBV-96, SAC-SMA), 
but there is a clear tendency to move towards fully distributed parametric models (like PDM-
G2G, HLRDM-SACSMA, LARSIM, WASIM, etc). Until now the operational data assimilation 
schemes used are either manual or deterministic. The question is how ensemble data 
assimilation can be facilitated using these types of distributed models. Model uncertainty must 
be taken into account and the model uncertainty should reflect the uncertainty given the 
knowledge of the modeled area and model structure used.  
 
Emerging questions: 
- How can the model uncertainty (given a model calibration) be derived and specified for both 
lumped and distributed hydrological models? 
- How can the model uncertainty be formulated separately from initialisations uncertainty? 
- Can a generic process be formulated to derive the model uncertainty? 
 

2.3 Data Assimilation Methods 
 
Data assimilation is a technique to merge measurements of any type with estimates from 
geophysical models (Reichle, 2008). It can be seen as an update of the model state with 
externally measured variables (Pauwels and De Lannoy, 2006; Clark et al., 2008), which also 
quantifies the errors, uncertainties in input data, model structure and observations (Weerts 
and El Serafy, 2006; Salamon and Feyen, 2009; Clark et al., 2008).  
 
The data assimilation methods used in hydrology can be divided into two classes, as follows: 
(1) sequential methods and (2) variational methods. The most well known sequential method 
is the Kalman filter. The Kalman filter (KF) is originally developed for linear systems (Kalman, 
1960). Since the hydrological processes are rather non-linear, it further developed into the 
Extended Kalman filter (EKF), e.g. (Georgakakos,1986). The major drawbacks of Extended 
Kalman Filter (EKF) are the high computational demand for the propagation of the 
background error covariance (especially for large system state vectors), and the neglection of 
higher order derivatives for the background error covariance propagation and the mapping of 
the observational information (the observed discharge) to the model state variables (Pauwels 
and De Lannoy, 2009; Salamon and Feyen, 2009). The Ensemble Kalman filter (EnKF) 
(Eversen, 2003; Evensen, 2009) represents another variation of KF. The EnKF propagates an 
ensemble of model realizations (generated from model perturbations) through time, and 
estimates the background error covariance matrix from the ensemble statistics. EnKF is 
computationally efficient, but is limited to Gaussian distributions (Weerts and El Serafy, 
2006;Pauwels and De Lannoy, 2009; Salamon and Feyen, 2009). Particle Filter (PF) is 
another form of a recursive Bayesian filter based on Monte Carlo simulation. Particles, 
associated with weights, are used to approximate the posterior probability distribution 
functions (Weerts and El Serafy, 2006). The advantage of this technique is that no 
assumptions on the form of the prior probability density function (pdf) of the model states are 
necessary and that the full prior pdf is being used, in contrast to EnKF. In theory, this would 
mean that particle filtering is more sensitive to the tails of the prior pdf, a property which 
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maybe of vital importance in flood forecasting, although this maybe at the cost of a lot more 
simulations (Weerts and El Serafy, 2006). 
Variational methods have been widely used in data assimilation for numerical weather 
prediction as a means of dealing with a very large number of observations to be assimilated 
in a computationally efficient way. The technique depends on defining the adjoint model, 
which provides local gradient terms for any predicted variable that can be matched to an 
observable. These gradients will vary in space and time, depending on the nonlinearity of the 
model. Linear extrapolation is then used to adjust model predicted variables towards the 
observed values, depending on an estimate of the covariance matrix. In this, it is similar to the 
Extended Kalman Filter(EKF) but, unlike the EKF, does not update the covariance matrix as 
the data assimilation proceeds. A hydrological forecasting applications in which variational 
methods are investigated was presented by Seo et al. (2003, 2009).  
 
Emerging questions: 

- Which method (sequential or variational) is more suitable for operational flood 
forecasting both in terms of hydrological performance and in terms of operational 
performance? (This work maybe carried out together with NOAA-NWS) 

- Which method is best in handling delays between modelled states and streamflows 
measurements (rainfall-runoff+routing)? 

 

2.4 Operational Forecasting 
 
During the forecast mode (see Figure 1.1), there are no measurements to adjust the states to 
approximate the true state of the modelled system anymore. The ensemble forecast resulting 
from the ensemble data assimilation also gives an estimate of the forecast uncertainty. Given 
proper error specification the initialisation uncertainty, the model uncertainty and the forcing 
uncertainty the forecasted error band should result in meaningful probabilities (tested over 
longer periods).  
 
Emerging questions: 
- How can forcing uncertainty (forecast mode) be specified? 
- How sensitive are the resulting forecasts for the specification of input and model 
uncertainties? Does the data assimilation using proper uncertainty specifications result in 
unbiased model forecasts? 
- Or is forecast calibration of the forecast made using data assimilation still necessary? 
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3 Progress 2009 

The FC2015 project named “Operational Data Assimilation using Distributed Hydrological 
Models” started April 2009. To be able to reach the key and scientific goals this project was 
formulated as a PhD project under the FC2015 project. The project is carried out as a joint 
research project between Deltares and Wageningen University. Supervisor of the project is 
prof.dr.ir. Remko Uijlenhoet (WUR, chair of the Hydrology and Quantitative Water 
Management Group) and co-supervisor is dr.ir. Albrecht Weerts (Deltares, Inland Water 
Systems-Operational Water Management).The cooperation is formalized in a contract 
between Deltares and WUR. A detailed preliminary research proposal has been put together. 
 
In July/August 2009, the PhD position was advertised. Due to the holiday period, the selection 
period was postponed to early September 2009. Oldrich Rakovec (MSc) started the PhD 
project November 1 2009. Since November 2009, the PhD candidate worked on improving 
the preliminary research proposal reported here which will be finalized 6 months after the 
appointment. A detailed organization and planning schedule of the PhD project is available in 
Chapter 4. The PhD candidate is also involved in the research school SENSE. 
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4 Organization & Planning 

4.1 Matching relations 
 

4.1.1 Deltares 
 
This FC2015 PhD project (2009.06.11-1200379) has relations with the following two Deltares 
projects 

Project Titel PhD candidate Project Leader 

1200322.009 PhD Postprocessing 
hydrological forecasts  

J. Verkade (TUD) P. Reggiani 

1200433.003 PhD Real-time decision 
support in water systems 
under uncertainty 

L. Raso (TUD) D. Schwanenberg 

 

4.1.2 Wageningen University  
 
Prof. dr. ir. Remko Uijlenhoet (Wageningen University) will function as promotor and therefore 
the PhD student will obtain his title from Wageningen University. Prof. dr. ir. Remko Uijlenhoet 
holds the Hydrology and Quantitative Water Management chair.  

4.2 Planning and Reviewing 

4.2.1 Review 
 

Name Role 

Uijlenhoet 

Weerts 

PhD committee 

promotor 

co-promotor 

PhD committee 

 

4.2.2 Planning 
 

Phase Product By Quality control Approved Accepted by 

Phase 1 PhD research 
plan 

PhD 
Student 

Uijlenhoet/Weerts Uijlenhoet/Weerts Uijlenhoet/Weerts 

Phase 2 Article 1  

Input 
Uncertainty 

PhD 
Student 

Uijlenhoet/Weerts Peers Journal 

Phase 3 Article 2  PhD Uijlenhoet/Weerts Peers Journal 
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Phase Product By Quality control Approved Accepted by 

Model 
uncertainty 

Student 

Phase 4 Article 3  

Forcing 
Uncertainty/
Operational 
Forecasting 

PhD 
Student 

 

Uijlenhoet/Weerts Peers Journal 

Phase 5 Article 4 

Case Studies 

PhD 
Student 

Uijlenhoet/Weerts Peers Journal 

Phase 6 PhD Thesis PhD 
Student 

Uijlenhoet/Weerts Uijlenhoet/Weerts PhD Committee 

 

4.2.3 Timeline 
 

The PhD project lasts 4 years (48 months), the following schedule is proposed 

Phase 1:  start – 6 months; 

Phase 2-5 :  6 - 42 months (4*9 months); 

Phase 6:  39-48 months; 

 

In the beginning of the research project the Ourthe catchment (tributary Meuse) is used as study 
area because of the data availability (see Appendix A). Later in the project, other case studies 
might be considered. The Ourthe case study will at some point also be included in the 
Demonstrator Flood Control (using only data that is available operationally). 
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A-1

A Overview Available Data Ourthe 

The Ourthe River is a tributary of the Meuse River. Most of the available data has been 
provided by MetSethy and KMI to Wageningen University and is only available for this PhD 
project. 
 
Data availability Ourthe: 
 
Daily: 

Streamflow: 1987-2005, gauges in Ortho, Tabreux and Mabompre 
Precipitation: 1968-2005 gauge in St. Hubert 
Temperature (Tavg, Tmax, Tmin): 1990-2009 in Rochefort 
Potential evapotranspiration: 1990-2005 in St. Hubert and Rochefort, 2003-2006 in 
Humain 
 

Hourly: 
Streamflow: 1990-2005 for river gauges at Tabreux, Nisramont, Mabompre, Ortho, 
1992-2005 at Hotton, 1995-2005 at Durbuy. 

  Precipitation: 1990-2005 for rain gauges in Ortho, Ouffet, Marche, Bastogne, 
1995-2005 in Rechamps and Tailles, 1997-2005 in Somme-Leuze, 1998-2005 in St. 
Hubert,1998-2005 in Flamierges, 2000-2005 in Erezee 
Temperature:1990-2009 in St. Hubert, 2003-2009 in Humain 
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Figure A.1 Digital elevation model for the Ourthe catchment and precipitation gauges 
 
 
 
 
 




