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1 Introduction

This report considers transient groundwater flow for stability assessment of dikes and
presents a numerical model for solving Biot's problem that considers pore water pressures
and displacement of the soil. The numerical code is added to the Deltares groundwater flow
module DgFlow [6], which supports the dike analysis module DAM [4, 5] of the flood early
warning system FEWS. Delft-FEWS [9] is acknowledged worldwide for the real time
forecasting of hydrodynamic water levels and waves in rivers, lakes and seas, using
prediction models and monitoring data.

Figure 1.1 Piezolines in a dike geometry.

Groundwater flow simulations provide predictions of the water pressure field in the dike,
which can be used for the stability assessment. The finite element method is often preferred
for solving these problems because of the flexibility of this technique in capturing complex
geometries [2]. Figure 1.1 illustrates the outcome of a simulation for a system of two aquifers
confined by aquitards and a dike. The figure shows the piezolines in the aquifer and the
embankment. Piezolines follow from an averaging procedure in vertical direction over an
aquifer for which they hold. The groundwater simulations presented in this report give a two-
dimensional water pressure field that can be used for stability analysis directly. The difference
between the total stress and water pressure gives the effective stress, which relates to the
shear stress and slope stability.

The blue line displays the free water level at the river side, and the green line presents the
phreatic surface in the dike. The phreatic surface resembles the pressure contour that has a
zero value. In this configuration seepage occurs at the lower end of the berm, where the
green line intersects the dike surface. The black line presents the decline of the hydraulic
head in the aquifer from the river side to the polder.

Nowadays pore water fields follow from solving the storage equation. This procedure provides
a computational efficient method and requires less soil parameters than for solving Biot's
problem. The Biot model couples the storage equation to the equilibrium equation and is able
to simulate the generation and dissipation process. The storage equation by itself is not able
to simulate the generation of pore water pressure due to hydraulic loading and compression
of the subsurface.  Figure 1.2 shows the results of an oedometer test simulation loaded by an
increasing water level at the top. The left picture shows the water pressure generation as
simulated by solving the storage equation, the right picture follows from solving the fully
coupled storage-equilibrium equation.
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Figure 1.2 Flow versus flow-deformation simulation.

Watex solves the transient flow equation in quasi two dimensionally and adds a pore water
generation procedure to simulate the effect of hydraulic loading. Figure 1.3 presents a
simplified geometry for which the procedure will be outlined.

Figure 1.3 Piezometric heads in a Watex geometry.

The flow equation is solved in the flow domain denoted by 2(m ) , the boundary of which
will be denoted by (m) . The independent variables are time t (s)  and space ( , )x y (m) ,
the primary unknown is hydraulic head (m) . The flow equation is given by

2 2

2 2 onxx yyg n k k
t x y

(1.1)

where 3(kg/m )  denotes the density of the pore water, g 2(m/s )  is gravity, 2(m /N)  is

the compressibility of the soil, n (-)  expresses porosity of the porous medium, 2(m /N)  is
the compressibility of the pore water holding gas inclusions, xxk  and yyk (m/s)  denote
hydraulic conductivity in both spatial directions. On the boundary conditions apply that close
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the flow equation. Dirichlet boundary conditions simulate the river level in time ( )h t (m)  at
the left side of the construction and a constant Dirichlet condition simulates the polder water
level at the right side. These condition close the flow equation (1.1) by

on , onr ph t c (1.2)

Von Neumann or second-type boundary conditions prescribe the derivative of the head or
zero flux on the remaining boundary.

Hydraulic head follows from the pore pressure p 2(N/m )  as /p g y . The proposed
flow model is not able to simulate the fully coupled water phase - soil phase behavior
because the equilibrium equation, describing the deformation of the soil skeleton, is omitted.
Loading of the water phase underneath the river bed by water level changes is taken into
account in a heuristic manner. According to this approach, the load increment 2(N/m )
distributes over the liquid phase p 2(N/m )  and the soil skeleton 2(N/m )  according
to

np
n n

(1.3)

For each time step, the hydraulic head obtained in the previous time step is adjusted as
* / ( )n n h n , where h  is the water level increase over the time step.

Chapter 2 presents the mathematical flow-deformation model. The fully coupled equilibrium
equation and storage equation forms Biot's model, which provides the governing equation.
Chapter 3 gives the numerical model. First the numerical formulation will be presented, and
then the resulting set of algebraic equations and the numerical solution procedure will be
outlined. Chapter 4 provides a set of numerical experiments; undrained loading, drained
loading and hydraulic loading of an oedometer test. Chapter 5 draws the conclusions and
presents recommendations for future work. This future work should consider the applicability
of a heuristic loading procedure already available in Fews-Dam.
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2 Mathematical model

The small deformation formulation is based on the small strain theory. The coupled set of
equilibrium equation and storage equation forms Biot's model [7,8]. The equilibrium equation
[1] follows from conservation of moment of momentum, balance of momentum, Terzaghi's
effective stress formulation, Hooke's generalized linear elastic constitutive law, and the strain-
displacement equation. The storage equation [2, 3] follows from the mass balance equation
and Darcy's empirical law. Throughout this report compressive stresses are positive, and
saturated pore pressures are positive. In the first and second section index notation will be
used, ix  denotes Cartesian coordinates in space and t  denotes time, 2(m )  represents
the deformation-flow domain and (m)  its boundary. The third section adopts the matrix-
vector notation, which facilitates effective coding and maps the fourth order material stiffness
tensor on a simple matrix.

2.1 Equilibrium equation

The momentum balance equation reads

0 onij
i

j

g
x

(2.1)

where ij
2(N/m )  denotes the total Cauchy stress,  is the soil density 3(kg/m ) , and ig

represents the gravitational acceleration vector 2(m/s ) . For a y-coordinate pointing in

opposite direction of the gravitational vector 29.81 m/syg . The soil density follows from

the solid phase density and the liquid phase density as 1 s ln n , where n (-)  is
the porosity of the soil. Conservation of moment of momentum requires

ij ji (2.2)

Terzaghi's principle states that the total stress follows from the effective stress ij
2(N/m )

and the pore pressure p 2(N/m ) . This effective stress principle is written as

ij ij ijpS (2.3)

In this expression ij (-)  denotes the Kronecker delta and S (-)  is saturation, which
represents the part of the pore space that is filled with pore water. The constitutive equation
relates the effective stress to the stain and states for an elastic material

ij ijkl klD (2.4)
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Here ijklD 2(N/m )  denotes the fourth order material stiffness tensor and kl (-)  is  the

second order strain tensor. The material stiffness tensor formulated in Lam\a'{e} constants
2(N/m )  and 2(N/m )  reads

ijkl ik jl il jk ij klD (2.5)

The strain-displacement expression relates displacement iu (m)  to strain according to

1
2

ji
ij

j i

uu
x x

(2.6)

The equilibrium equation now follows form equations (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6)
as

1
2 0 onk l

ijkl i
j l k i

u uD pS g
x x x x

(2.7)

In this report two types of boundary conditions that close the equilibrium equation (2.7) will be
discussed. Dirichlet boundary conditions prescribe the displacement according to

1on u
i iu u (2.8)

and Cauchy boundary conditions specify a boundary force as

2on u
ij j in (2.9)

In the definition of the boundary conditions 1
u (m)  and 2

u (m)  denote disjoint parts of the

deformation boundary, iu (m)  expresses the prescribed displacement and i
2(N/m )  is the

imposed boundary compressive force vector. The normal unit vector in (-)  points into the
domain.

2.2 Storage equation

The mass balance equation for the liquid phase reads

0 onl l
i

i

nS nS v
t x

(2.10)

where iv (m/s)  is the average velocity of the fluid. The density of the liquid phase is
assumed to depend on the liquid phase pressure by an equation of state that reads

0 0exp ( )l l p p , where 2(m /N)  is the compressibility of the fluid and 0
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3(kg/m )  expresses the density of the fluid at reference pressure 0p 2(N/m ) . Using this
expression, conservation of mass of the fluid can be written as

0 oni
i

nS pn nSv
t t x

(2.11)

The mass balance equation for the solid phase reads

(1 ) (1 ) 0 ons s
i

i

n n w
t x

(2.12)

where iw (m/s)  is the velocity of the solid phase. Under the assumption that the density of
the solids is constant, this equation can be rewritten as

(1 ) 0 oni
i

n n w
t x

(2.13)

Adding equation (2.11) and equation (2.13) multiplied by saturation eliminates the time
derivative of porosity and gives

0 oni i i
i i

dS pn n nS v w Sw
dp t x x

(2.14)

where / /i i vw x t  and the volumetric strain v (-)  reads /v i iu x . The specific

discharge iq (m/s)  expresses the velocity of the fluid phase relative to the velocity of the

solid phase as i i iq nS v w . Using these relations, equation (2.14) can be reformulated
as

0 onv i

i

qdS pS n n
t dp t x

(2.15)

Darcy's law for fluid motion gives an expression for the specific discharge that reads

r ij l
i jl

j

k pq g
x

(2.16)

Here ij
2(m )  denotes the intrinsic permeability tensor, l (kg/ms)  is the dynamic viscosity

of the liquid phase and rk (-)  denotes the relative permeability that scales the intrinsic

permeability in the unsaturated zone. Hydraulic conductivity ijk (m/s)  follows from intrinsic
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permeability as /l l
ij ijk g . The storage equation for saturated groundwater flow now

follows from the mass balance equation (2.15) and Darcy's relation (2.16) and reads

onr ij lv
j

i j

kdS p pS n n g
t dp t x x

(2.17)

Two types of boundary conditions that close storage equation (2.17) will be presented.
Dirichlet boundary conditions prescribe the pressure p 2(N/m )  and read

1on pp p (2.18)

and Neumann boundary conditions impose a volume flux nq (m/s)  by

2on p
i i nq n q (2.19)

Here the normal unit vector in (-)  points into the flow domain 2(m )  over a part of the

flow boundary p (m) .

2.3 Governing equation

The equilibrium equation and the storage equation will be reformulated in plain strain matrix-
vector notation, which facilitates effective coding. The primary unknowns will be written as

,
T

x yu u  and p and the formulation will be limited to saturated conditions. First the

differential operator (1/m)  and its counterpart L (1/m)  will be presented in matrix
form as

0 0

0 0
,

0 0

0

x

yx L

y z

x y

(2.20)

The equilibrium equation (2.7) written in matrix form then reads

0 ,TL g D L u p m (2.21)
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where the stress mapping column reads 0111 Tm  and 0 9.81 Tg  if the
gravitation vector point in negative y -direction.  The engineering strain vector

zz

T

xx yy xy , where xy xy yx , follows from the displacement vector as

L u . The effective stress
T

xx yy xz yz  follows from the stiffness matrix

and the strain vector as D . The fourth order material stiffness tensor is mapped
on a simple matrix and reads

4 2 2 0
3 3 3
2 4 2 0
3 3 3
2 2 4 0
3 3 3

0 0 0

K G K G K G

K G K G K G
D

K G K G K G

G

(2.22)

In this expression K 2(N/m )  denotes the compression or bulk modulus of the soil and G
2(N/m )  is its shear modulus. The bulk modulus and the shear modulus follow from Lamae's

constants as 2
3K  and G . Alternatively the Young's modulus E 2(N/m )  and

Poisson's ratio (-)  can be used according to

,
3 1 2 2 1

E EK G (2.23)

The storage equation (2.17) written in matrix form reads

1T T l
l

pm n p g
t t

(2.24)

where
T

vm  and v xx yy . The compressibility of the fluid phase corresponds to

the inverse of the liquid phase compression modulus lK 2(N/m )  as 1/ lK . The intrinsic
permeability is expressed by its matrix as

0
0
xx

yy
(2.25)

The governing equations (2.21) and (2.24) will be closed by deformation boundary conditions
(2.8) and (2.9) in combination with flow boundary conditions (2.18) and (2.19).
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3 Numerical model

The primary field variable in the equilibrium equation is the soil displacement and the primary
variable in the storage equation is the pore pressure. Nodal approximations will be written as

1 1 n n

T
x y xn ynu u u u u  and 1 n

T
np p p , where nn  denotes the number of nodes.

The finite element method imposes a trial function for both that can be written as
ˆ ˆ,u A u p N p (3.1)

where A (-)  is the dimensional extended basis function matrix N (-)  given by

1 2

0 0
0 0 ,
0 0

n

u
i

i u p p p
i n

u
i

N
A N N N N N

N
(3.2)

Here iN (-)  denotes a single basis function and the column iA  adds to the extended

basis function matrix as 1 2 nnA A A A . Strain state variables follow from

1, l
lB u q N p g (3.3)

where B (1/m)  denotes the basis function spatial derivatives matrix that extends N
(1/m) . Spatial derivatives of the basis function relate to the strain interpolation matrix

i
iB LN . These matrices are given by

1 2

1 2

0 0

0 0

0 0

0

n

n

u
i

pu p p
ni

i
pu p p

ni

u u
i i

N
x

NN N N
y x x xB N

NN N N
z y y y

N N
y x

(3.4)

The extended matrix follows from its components as 1 2 nnB B B B .

3.1 Numerical formulation

The weak form of the equilibrium equation (2.21) reads
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ˆ 0T T TA L d A g d (3.5)

Application of Green's theorem and imposing Cauchy boundary conditions (2.9) gives

2

ˆ
u

T T TB d A g d A d (3.6)

and its incremental form reads

2

ˆ
u

T T T iB d A g d A d R (3.7)

where the residual is given by

2

ˆ
u

T T Ti i i iR A g d A d B d (3.8)

The actual Cauchy stress at the new state 1i , follows from the previous stress state and

incremental stresses as 1i i . The residual was calculated for the previous

time step and should be zero approximately.

2

ˆ ˆ

u

T T

T T i

B D L u d B p m d

A g d A d R
(3.9)

The actual displacement for the new state follow from the previous state of the system and
the incremental displacement as 1i iu u u . The Galerkin formulation sets equation

(3.9}) to

2
u

T T

T T i

B D B u d B m N p d

A g d A d R
(3.10)

The internal force vector of the residual vector given by equation (3.8) for the previous follows
from

n n nD B u m N p (3.11)

The weak form of the storage equation (2.24) follows from

ˆˆ

1

T T T

T T l
l

pN m d n N d
t t

N p g d
(3.12)



1206015-003-GEO-0001, Version 2, 29 January 2013, preliminary

Modeling transient Groundwater Flow for Stability Assessment of Dikes 13 of 25

Green's theorem applied to equation (3.12) and imposing Neumann boundary conditions
(2.19) then gives

2

1

ˆˆ

1 ˆ
p

T T T

T Tl i
nl

pN m d n N d
t t

N p g d N q d
(3.13)

Galerkin weighting and substitution of the interpolation functions then gives

2

1 1
p

T T T

l
T T Ti

n l l

du dpN m B d n N N d
dt dt

N q d N N p d N g d
  (3.14)

Implicit linear integration in time provides a set of algebraic equations that is written as

2 2

1

1

p p

T T T

T T T i
n nl

l
T Ti

l l

N m B u d n N N p d

t N N p d t N q d t N q d

t N N p d t N g d

  (3.15)

Equation (3.10) and equation (3.15) provide two sets of algebraic equations that need to be
solved numerically.

3.2 Algebraic equations

The set of algebraic equations that follows from a fully coupled equilibrium-storage
formulation, the proposed finite element discretization and implicit time integration is written
as

0 0
0

i

T i

uK Q u F
t Hp VQ t H M p

(3.16)

Here H 4(m /Ns)  is the conductivity matrix, K 2(N/m )  denotes the stiffness matrix,

Q (m)  is the coupling matrix, M 4(m /N)  expresses the compressibility matrix, F

(N/m)  denotes the load column and V 2(m )  is the hydraulic load column. The stiffness
matrix follows from

TK B D B d (3.17)

the coupling matrix reads
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TQ B m N d (3.18)

the compressibility matrix is written as
TM n N N d (3.19)

and the conductivity matrix reads
1 T

lH N N d (3.20)

The body force and boundary traction column is given by

2
u

T TF A d A g d (3.21)

and the gravitation force and boundary flux-volume increment reads

2
p

l
T T

nlV t N g d t N q d (3.22)

The set of algebraic equations (3.16) has to be solved per time step. The actual pore
pressure at the new state follows from the previous stress state and the incremental pressure
as 1i ip p p . The actual displacement follows from 1i iu u u .  For  a

non-linear problem Picard iterations resolve the non-linearities and convergence follows from
a residual vector norm given by equation (3.16) where the internal force given by equation
(3.11) has to balance the external force. The linear problem is solved by a direct solver.
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4 Numerical experiments

This chapter presents simulation results for a number of oedometer tests and three loading
cases: undrained loading, drained loading and hydraulic loading. The vertical boundaries of
the sample are closed for flow and a zero displacement in horizontal direction is imposed for
all oedometer tests. At the bottom of the sample the boundary condition specifies a zero
displacement in both vertical and horizontal directions. At the top and the bottom of the
sample a drained condition applies, here the pressure is prescribed. Table 4.1 gathers the
material parameters that will be used for simulation.

variable value
Young's modulus oedE 7 210 N/m
Poisson's ration 0
porosity n 0.33
wet soil weight s 4 32·10 N/m
pore fluid weight l 4 310 N/m
pore fluid compressibility -9 26.122·10 m /N
intrinsic permeability -17 21.157·10 m
gravitational acceleration yg 210.0 m/s

Table 4.1 external material parameters

From these values the following parameters can be derived: the bulk modulus of the skeleton
K  equals 6 23.33·10 N/m , the shear modulus of the soil G  is 6 25·10 N/m , the hydraulic

conductivity k  is -510 m/d , and the void ratio e  equals 0.4925 . The compression modulus of

the water phase lK is 8 21.633·10 N/m and followed from

3 / 1 2 1l
u uK nK , where the undrained Poisson ratio u  was  set  to

0.495 .  The compressibility of the soil  or vm  equals -7 210 m /N  and the compressibility of

the liquid phase  equals -9 26.122·10 m /N . The compressibility coefficients follow from
41/
3

K G  and 1/ lK . The consolidation coefficient vc  then reads -7 21.157·10 m /s

as / l
vc k g n .

4.1 Undrained loading

The section presents the undrained loading case. Dissipation of water pressure for a one-
dimensional consolidation problem [8] follows from

2

2v
p pc
t y

(4.1)
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The analytical solution for this one-dimensional consolidation equation (4.1) for the case
where 0p  for 0y  and 0p  for 2y h  [7] reads

1 2
2

2
10

1( ) 4 cos 2 1 exp 2
2 1 2 4

j
v

j

c tp t h yj j
p j h h

(4.2)

Figure 4.1 Numerical and closed form solution for undrained loading.

Undrained mechanical loading applies a compressive force 250 kN/m  at the top of the

soil column. Bottom and top are drained and a pressure 20 kN/mp  applies. Figure 4.1
compares the numerical solution and the closed form solution for undrained loading. Results
compare well.

Figure 4.2 gives the results for the undrained loading presided by gravity loading. A pressure
20 kN/mp  applies at the top and 210 kN/mp  applies at the bottom. These conditions

produce a hydrostatic pressure distribution at the end of the simulation for which the pore
water does not flow. Gravity loading gives a total stress 20 kN/m  at the top and

220 kN/m  at the bottom as the soil density equals 320 kN/m . For the initial situation
displacements are set to zero. Mechanical loading generates water pressures and hardly
increases effective stresses at the beginning of the process. Total stresses do increase as
these stresses sum the pore water pressure and the effective stress. The total stress

250 kN/m  at the top and 270 kN/m  at the bottom due to loading.  The load
distribution corresponds to equation (1.3). In time water pressures dissipate and the increase
in effective stress resembles the loading force per surface area. The final displacement
follows Hook's law for a linear material.
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Figure 4.2 Undrained loading presided by gravity loading

The algorithm performed well in simulating the oedometer tests, however the results show
pressure oscillations. A combination of six-node triangular elements for displacements and
three-node triangular elements for pressure provides consistent stresses in the integration
points. The higher order elements need to be sub-parametric; the low order elements remain
iso-parametric. The number of integration point needed has to be examined as well as the
graphical procedure that extrapolates stresses at the integration points to nodal points. The
pressure oscillation may also be a result of mesh orientation effects. The pressure oscillations
need further investigation.

4.2 Drained loading

This section presents the drained loading case. The load function is given by

0 1 0 1 1

1 1

/ if

if
c

t t t t

t t
(4.3)

where the mechanical condition at the top is given by a prescribed compressive force. The
mathematical formulation of the boundary conditions is supported by 1 1t  d, 0 20 kN/m ,

and 1 250 kN/m . Figure 4.3 shows the results for the drained loading case.
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Figure 4.3 Drained loading.

4.3 Hydraulic loading

This section presents the hydraulic loading case. The pressure loading follows from

0 1 0 1 1

1 1

/ if

if
c

p p p t t t t
p

p t t
(4.4)

Hydraulic loading sets a time depended water table to the top of the soil sample, water
pressures at the bottom remain constant. As a result of these boundary conditions
groundwater flow occurs in downward direction and increases in time until a steady state
situation is established. A linear water head rise of five meters in one day at the top is
translated in loading case parameters: 1 1t  d, 0 20 kN/mp , and 1 250 kN/mp . At the

bottom of the soil sample 210 kN/mp . Maximum displacements are found for the steady
state situation. The linear pressure distribution corresponds to a nonlinear displacement
distribution.
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Figure 4.4 shows the results for the hydraulic loading case.

Figure 4.4 Hydraulic loading.
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5 Conclusions

In general, modeling transient groundwater flow will provide less conservative pore water
pressure fields for the stability assessment of dikes than steady state simulations. Nowadays
these pore water fields follow from solving the storage equation. This procedure provides a
computational efficient method and requires less soil parameters than solving Biot's problem.
However the storage equation is not able to simulate the generation of pore water pressure
due to hydraulic loading and compression of the subsurface. The Biot model couples the
storage equation to the equilibrium equation and is able to simulate the generation and
dissipation process.

This report presents a numerical model for solving Biot's problem that considers pore water
pressures and displacement of the soil. The numerical code is added to the Deltares
groundwater flow module (DgFlow) which supports the dike analysis module (DAM) of the
flood early warning system (FEWS). The model applies for plane strain quasi-static fully
coupled flow - deformation problems and is able to simulate groundwater pressure generation
and dissipation as a consequence of loading the subsurface. Six-node triangular finite
elements discretize the equilibrium equation and three-node triangular elements discretize the
storage equation. A fully implicit finite difference scheme integrates the ordinary differential
equations in time. The numerical examples considered in this report, impose linear elastic soil
behavior, which gives rise to a linear set of algebraic equations that was resolved by a direct
solver per time step. Numerical simulations have to show the consequences of neglecting the
deformations in the prediction of transient groundwater pressure fields in both ways. The flow-
deformation formulation simulates pore pressures and soil displacements that can both be
monitored in the field.

The algorithm was used to simulate a set of oedometer tests and performed well, however
the results show pressure oscillations. A combination of six-node triangular elements for
displacements and three-node triangular elements for pressure provides consistent stresses
in the integration points. The higher order elements need to be sub-parametric; the low order
elements remain iso-parametric. The number of integration point needed has to be examined
as well as the procedure that extrapolates stresses at the integration points to nodal points in
order to provide graphical results. The pressure oscillation may also be a result of mesh
orientation effects.

Future work should include verification tests based on analytic solutions and more complex
Plaxis simulations. A comparison with Watex simulation results should also be made, which
could support the use of the newly developed DgFlow algorithm. Validation tests could
demonstrate the applicability of the model and a parameter study should indicate for which
cases the generation of pore water pressures should be included in modeling transient
groundwater flow for stability assessment. Future work should also consider the applicability
of the heuristic loading procedure already implemented in Fews-Dam.

Figure 5.1 shows the proposed finite element mesh for solving the coupled flow-deformation
problem. This setup will be used in order to compare the DgFlow with Watex and Plaxis.
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Figure 5.1 Finite element mesh flow-deformation problem.
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Notations

A extended basis function matrix (1/m)

B basis function spatial derivatives matrix (-)

vc                     consolidation coefficient 2(m /s)

ijklD                material stiffness tensor 2(N/m )
e                   void ratio (-)
E                 Young's modulus 2(N/m )
F load column (N/m)

ig                  gravitational acceleration vector 2(m/s )
G                   shear modulus 2(N/m )
h                      river water level (m)
H conductivity matrix 4(m /Ns)

rk                     relative permeability (-)
lK              liquid phase bulk modulus 2(N/m )

K elastic stiffness matrix 2(N/m )

K                compression or bulk modulus 2(N/m )
L differential operator (1/m)

m stress mapping column (-)

M compressibility matrix 4(m /N)
n porosity (-)

in                normal vector (-)
N basis function (-)
p pore pressure 2(N/m )

iq                     Darcy flux vector (m/s)

nq inflow (m/s)
Q coupling matrix (m)

S saturation (-)
t                      time (s)

iv                     liquid phase velocity vector (m/s)

iw                    solid phase velocity vector (m/s)
V hydraulic load 2(m )

ix                space coordinate vector (m)
                soil skeleton compressibility 2(N/m )
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                  pore water compressibility 2(N/m )
deformation-flow boundary (m)

ij Kronecker delta (-)

ij strain tensor (-)

v volumetric strain (-)

ij intrinsic permeability tensor 2(m )

Lam\a'{e} constant 2(N/m )
                    Lam\a'{e} constant 2(N/m )

l                  dynamic viscosity (kg/ms)
                    Poisson's ratio (-)

u                 Poisson's ratio undrained (-)
soil density 3(kg/m )

s                 solid phase density 3(kg/m )
l                  liquid phase density 3(kg/m )

ij total Cauchy stress tensor 2(N/m )

ij effective stress tensor 2(N/m )

i boundary compression force vector (N/m)
                   hydraulic head (m)
                 deformation-flow domain 2(m )

gradient operator (1/m)
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