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1  Introduction 

1.1 Background project State of the Coast  
The Netherlands is a low-lying country where, approximately, 27 per cent of the territory is 
located below mean sea level and 55 per cent is prone to flooding. Protection against flooding 
is traditionally the primary objective of coastal policy in the Netherlands. However, since 1990 
coastal policy has been subject to a number of modifications, and new objectives have been 
added to cope with the structural erosion problems of the Dutch coast. To fulfil these new 
objectives, the yearly volume of sand for nourishments was first increased to 6 millions m3 of 
sand in 1990 and then to 12 millions m3 in 2001. Even higher volumes might be necessary in 
the future to cope with the more severe sea level rise scenarios predicted.  
On the other hand, the effect of the global economic crisis is pushing coastal managers to the 
development of optimal efficient and cost-effective nourishment strategies. Deltares has been 
commissioned by Rijkswaterstaat Waterdienst to develop knowledge needed to carry out an 
effective nourishment strategy (spatially and temporally).  Deltares organised this project 
Kennis voor Primaire Processen – Beheer en Onderhoud van de kust (Knowledge for Primary 
Processes - Coastal Management and Maintenance) in a number of sub-projects. In order to 
link the project results to the actual nourishment practice of Rijkswaterstaat, the subprojects 
focus on the validation of a number of hypotheses on which the present nourishment strategy 
is based. “Toestand van de Kust” (State of the Coast) is one of the sub-projects of this multi-
year program, with the aim of identifying the impact of nourishments on a number of 
indicators along the Dutch coast. During this first year, the analysis has focused on the North 
Holland coast (Giardino et al., 2012) and is being extended to the entire Dutch coast.  
 
The following hypothesis were identified for the project Toestand van de Kust: 
Hypotheses project State of the Coast 
1) The nourishment strategy of the past years had lead to a positive (seaward) development 
of a number of “indicators” along the Dutch coast.  
2) As a consequence, nourishments contribute to an increase of the safety level through a 
seaward shift of the erosion point. 
 
 
The objective of project State of the Coast is two-fold: 
• To support the Waterdienst in determining where to nourish.  

This is achieved by indicating on which spots along the coast the sediment buffer is 
limited. This buffer does not only concerns sediment volumes, but a wider range of 
coastal indicators. On spots that encounter limited buffers, the morphological 
development can be examined. If the buffer tends to get lower than a reference buffer 
and a (natural) increase in sediment volume is not expected on a short term, the 
Waterdienst can consider to nourish this part of the coast. In case financial state of 
affairs makes prioritizing urgent, the state of the coast can contribute to the prioritization 
process.  

• To advise the Waterdienst on the most efficient nourishment strategy.  
This is achieved by deriving the effect of the previous nourishment strategy (1990 till 
present). Learned lessons from the past can be used to improve future nourishment 
strategies.  
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1.2 Motivation and Objectives 
The motivation for applying the Bayesian network approach within the State of the Coast 
project is two-fold:  
 
1 A Bayesian network is a useful tool to evaluate cause and effects (e.g. nourishment and 

effects on coastal indicators).  
2 A Bayesian modeling approach gives an intuitive representation of the physical 

processes involved. The use of nodes and arrows makes directly visible which variables 
play a role and how they are correlated.  

3 A Bayesian network is a probabilistic method and therefore allows to account for 
uncertainties. 

 
The ultimate goal of this work is the development of a tool in support to decision makers for 
the design and evaluation of nourishment effects. In order to meet this goal, the model should 
enable the decision maker to: 

1 Identify cause-effect relationships between nourishment volumes and change in trend in 
indicators.  

2 Identify relationships between the different indicators. 
 
These two aspects are investigated within this study with priority on indicators on short- and 
medium- term safety. 

1.3 Set up of the study 
The network set up within this study focuses on the North Holland coast. Nevertheless, the 
methodology applied is generic and the study could be easily extended to other coastal 
areas.  
 
In Chapter 2, a brief overview on Bayesian modelling is given, with more detailed information 
on the variables used in the current network and how they are interrelated. Chapter 3 
contains a number of practical examples that have been implemented to address some of the 
underlying hypothesis of this project (Section 1.1), and to show the usefulness of Bayesian 
networks for nourishment designs. The main conclusions of this study are summarized in 
Chapter 4, while a number of recommendations to improve the current work are given in 
Chapter 5. 
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2 Bayesian Network 

2.1 Introduction 
A Bayesian network is a method of reasoning using probabilities, where the nodes represent 
variables and arrows represent direct influence between the nodes. The advantage of using 
this approach is that by combining multiple parameters, makes it possible to make robust 
forecasts. 

In general, the Bayes rule is expressed as: 

( | ) ( | ) ( ) / ( )i j j i i jp F O p O F p F p O , 

where the left-hand term is the updated conditional probability (or ‘posterior probability’) of a 
forecast Fi, given a particular set of observations, Oj.  

The best way to understand the Bayesian network is to illustrate it with an example. Here, the 
example of the European soccer championship will be used. Suppose the probability that the 
Netherlands will win the finals is 20% (p(Fi)). The first match of the Netherlands (p(Oj)) will 
affect the prior probability of event (p(Fi)). After this first match (loss against Denmark), one 
can update the prior probability of event (p(Fi)) which will become conditioned or constrained 
by event Oj. Now the probability that the Netherlands will win the cup given the first los is just 
5% and will be defined as ( | )i jp F O  . New information changes your degree of belief of a 
certain event. 

Bayesian statistics are not new and they have been applied in different fields. In the field of 
coastal engineering Bayesian statistics have been used for example to predict coastal cliff 
erosion (Hapke and Plant, 2010), to predict wave height evolution in the surf zone given very 
sparse boundary conditions (Plant and Holland, 2011a), and to predict offshore wave heights 
and depth estimates given limited information from an onshore location (Plant and Holland, 
2011b). Den Heijer et al. (2012) and Knipping (2012) have used a Bayesian network 
approach to predict the impact of extreme storm events on dune erosion along the Dutch 
coast. Moreover, several applications for Bayesian modelling related to environmental 
modelling are recently also being explored (Aguilera et al., 2011). 

2.2 Set up of a network  
The set up of a Bayesian network involves three main steps: construction, training and validity 
check (Knipping, 2012). These steps are illustrated in details in Appendix B with specific 
reference to the North Holland case.  
Constructing the network means first defining the main variables that play a role in describing 
the process to study. For our application, the following variables have been selected: 
nourishment type and nourishment volume (Section 2.2.1), a number of coastal indicators 
(MKL, probability of failure and MDL; Section 2.2.2), a number of sub-areas with 
homogeneous characteristics (Section 2.2.3), three time intervals with similar nourishment 
strategy (Section 2.2.4), and  a number of time horizons at which nourishment efficiency will 
be evaluated (Section 2.2.5). The selected variables are represented by nodes in the 
Bayesian network.  
A correlation between two variables in a Bayesian network is illustrated with a directed arrow. 
In a Bayesian network, correlation means direct influence, or also called dependency using a 
statistical term. The process of defining nodes and designing arrows involves a good 
understanding of the physical processes underlying the network.  
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The feeding of information to the Bayesian network in order to construct the conditional 
probability tables is called training.  
 
Finally, an evaluation or validity check of the model is made. In other words, is the Bayesian 
network capable to cover a representative sample of the behaviour domain to be measured 
and is the Bayesian network able to scientifically answer the questions is intended to answer?  

2.2.1 Nourishment type and nourishment volume 
The nourishment policy has been undergoing several modifications in the last 20 years. 
Before 1990, nourishments were not yet a common practice and usually they were built on 
the beach or on the dunes, eventually combined with hard structures (Giardino et al., 2010). 
After 1990, nourished volume was increased to about 6*106 m3/year for the all Dutch coast. 
Moreover, besides beach nourishments, more economically attractive shoreface 
nourishments started becoming common practice. In 2001 the volume was further increased 
to 12*106 m3/year to compensate for sediment loss due to sea level rise within the Coastal 
Foundation (Mulder et al., 2011).  
A nourishment database has been set up at Deltares in close collaboration with the 
Waterdienst within the project Toestand van de Kust. Nourishments are available for all years 
and defined by volumetric values in m3/m for different types of nourishment (beach, shoreface 
and dune). This database, which is  provided by Open Earth (Van Koningsveld et al., 2010) 
via:  
 
http://opendap.deltares.nl/thredds/dodsC/opendap/rijkswaterstaat/suppleties/suppleties.nc.html 
 
was used to set up the network.  

2.2.2 Coastal Indicators 
A Bayesian network is based on measured or pre-computed data only. This means no 
calculations are executed within the Bayesian network. Prior to the study, a number of coastal 
indicators namely MKL, Probability of Failure and MDV were defined and pre-computed to 
evaluate the effects of a nourishment along the shore and in dune area (Table 2.1). The MKL 
indicator was selected to represent the volume in the cross-shore profile, from approximately 
the dune foot down to the -5 m line; the MDV describes changes in dune volume between the 
dune foot and the erosion point of 1990 and it is described in Arcadis (2011). The probability 
of failure serves as an overall indicator for safety and was computed with the model PC-ring 
(HKVLijn in Water, 2011). 

The coastal indicators are available on the OPeNDAP server: 

https://svn.oss.deltares.nl/repos/openearthrawdata/trunk/rijkswaterstaat/ 
 

Table 2.1 Description of the coastal indicators chosen for the analysis 
Indicator Description 

Momentary Coastline 
Position 

MKL Volume of sand between dune foot and mean low water 

Momentary Dune Volume MDV Volume of sand between dune foot and erosion point 
(afslagpunt) 1990. 

Probability of Failure Pf Probability of failure of the first dune row (output of PC-
ring model) 
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The different Matlab functions used to build the input file containing the value of the indicators 
(*.cas file) are described in Appendix A. 

2.2.3 Sub-areas 
A number of sub-areas were defined in Giardino et al. (2012) for the North Holland coast and 
characterized by a homogeneous nourishment strategy and autonomous trend (Figure 2.1). 
The same sub-areas are used within the Bayesian network. 
 

 
Figure 2.1 Definition of the locations of the different sub-areas (from Giardino et al. 2012). The white numbers 

indicate the Jarkus rays limiting the different sub-areas.  

2.2.4 Time intervals 
One of the characteristics of Bayesian networks is that they can not explicitly model time, 
since all data are treated in the network independently from the moment when the data was 
measured or computed. To assess the effect of nourishments at different times, a separate 
variable was created identifying three different time windows, corresponding to different 
nourishment policies: 
 

1) 1965 – 1990: characterized by nearly no nourishment along the entire Dutch coast.  
2) 1991 – 2000: characterized by a nourishment scheme of about 6 millions of m3 of 

sand per year along the all Dutch coast.  
3) 2001 – 2010: characterized by a nourishment scheme of about 12 millions of m3 of 

sand per year along the all Dutch coast.  

2.2.5 Time horizons 
The efficiency of nourishments was evaluated for different time horizons: 1, 5, and 10 years. 
In this way, it was possible to compare the effect of beach nourishments (which usually have 



 

 

 
 
 
 
 

 
Assessment of the Nourishment Efficiency Using a Bayesian Modelling Approach 

 

2 November 2012, final 
 

8 of 37 
 

an instantaneous effect) against shoreface nourishments, which work on a longer time scale 
i.e. 5-10 years.  

2.3 Assumptions related to the Bayesian network 
A number of assumptions were made during the set up of the Bayesian network. Here an 
overview of those assumptions is given: 
 
• Choice of using a specific Bayesian software package called “Netica”(www.norsys.com). 

Two implications derive from this choice: 
– Discrete variables. 

Because Netica uses discrete variables characterized by bins, continuous 
variables need to be discretized. 

– Learning algorithm.  
To quantify the relations between the variables a learning algorithm pre-defined in 
the software has been used.  

• The selection of variables and relations to describe physical processes is subjective. 
• Input data are available at transect level, once per year. No information is available 

between transects and/or different years. 
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3 Applications 

3.1 Introduction 
A number of applications have been described in this chapter. Table 3.1 gives an 
overview of the examples described in the following sections. For each example, one or 
different nodes were constrained to be certain (100% probability). Constraining is 
essentially the same as conditioning a variable in the network on a particular value i.e. 
we only look at transects where a nourishment has taken place (100% to find there a 
nourishment) and we assess the effects of only looking at those transects instead of 
considering them all. Nodes that are constrained appear in the network in grey colour, 
while a brown colour is used to identify nodes which are let free. 
For each of the indicators, it is computed at how many transects (in %) there was a 
relative increase, decrease or negligible change with respect to the time window before, 
as well as the value of this relative change. Changes in MKL and MDL are defined as a 
difference between values at different years. For probability of failure, the ratio between 
the probabilities at different years is computed. We consider as negligible for a time 
period of 1 year, a change lower than 1 m in MKL, smaller than 1 m3/m in MDV, and 
0.01 in the ratio of probability of failure between two consecutive time windows.  
 
Table 3.1 Description of the coastal indicators chosen for the analysis 
Example Question to evaluate 
1) No nourishment 
versus nourishment 

What is the effect of nourishments on the coastal indicators? 

2) Nourishment strategy 
over time 

How does the nourishment scheme change over time? 

3) One year trend 
shoreface versus beach 
nourishment 

What is the difference between short term (1 year) effect of a 
shoreface and a beach nourishment on the chosen 
indicators? 

4) Ten year trend 
shoreface versus beach 
nourishment 

What is the difference between long term (10 year) effect of a 
shoreface and a beach nourishment on the chosen 
indicators? 

5) Relation MKL - Pf What is the effect of a shift in MKL on the probability of 
failure? 

6) Plan of a shoreface 
nourishment 

What is the volume of a shoreface nourishment, necessary to 
reach a seaward shift of MKL between 0 – 25 m per year, for 
a ten year time window, and for one specific subarea (e.g. 
subarea 2)? 

3.2 Overview of the Bayesian network – prior probabilities 
The overview of the overall network, with the prior probability distribution for each 
variable, is shown in Figure 3.1. For each variable, represented by a box in the network, 
the probability distribution is given. These prior probabilities are computed after training 
the Bayesian network (Paragraph B.6).The average value of the distribution, with its 
standard deviation, is shown in the last line at the end of each box. Although average 
value and standard deviation give a useful information on the statistical significance of 
some of the indicators (e.g. probability of failure, MDV and MKL), they do not have any 
significance for some of the others. As an example, the binary variable Nourishment 
executed in time horizon: yes/no is also characterized by an average value of 0.228 and 
a standard deviation of 0.42 which is simply determined by the fact that a 0 value is 
automatically assigned to a no variable and a 1 value to a yes variable. 
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In general, the network can be described as a fault tree where a number of events at 
the top of the network leads to consequences in the nodes which come below in the 
tree. At the top of the tree, first appears the node Time Horizon, defining the time 
window which we want to analyse, and the node Nourishment executed in the time 
horizon? No/Yes, defining if we want to look at all the transects or only the ones which 
have been nourished. It is already clear from this figure that most of the transects 
(77.2% no; 22.8% yes) either have never been nourished, either have not experienced 
nourishments for several years, when al time horizons are considered together. As a 
consequence, if we want to look at the effect of nourishments based on a distribution 
with enough hits for each class, we will need to constrain this variable and only look at 
the nourished transects.  
The nodes Subarea and Time Interval are defined below in the tree, the first describing 
what is the area of interest among the transects in North Holland and the latter which is 
the Time Interval of interest, corresponding to a certain nourishment strategy. Those 
nodes have a direct effect on the definition of the Nourishment Type and Nourishment 
Volume, given right below in the tree. The nourishment strategy is in fact different for 
different areas and for different time intervals. The nourishment strategy has then a 
direct effect on the indicators. This is defined first as % of transects at which the 
indicators decrease, increase or stay the same. Below in the tree, as relative change 
with respect to the time period before. Moreover, one of the underlying hypothesis of 
the project is that nourishments contribute to an increase of the safety level through a 
seaward shift of the erosion point. To prove this hypothesis, changes in values 
corresponding to the indicators MKL and MDV were linked with horizontal arrows to 
changes in the probability of failure. 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.48
5.81
38.6
43.6
9.72
1.81

3.09 ± 23

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.25
5.11
20.3
42.1
16.0
13.3

36.2 ± 98

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

2.65
20.0
32.7
30.7
12.8
1.20

2.2 ± 6.8

% of transects at which Pf: 
decrease
same
increase

53.2
3.84
42.9

-0.103 ± 0.98

% of transects at which MDV:
decrease
same
increase

28.6
3.77
67.6

0.39 ± 0.9

% of transects at which MKL: 
decrease
same
increase

44.9
6.84
48.3

0.0345 ± 0.96

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

11.2
27.1
6.49
13.9
10.1
9.81
14.2
7.10

7002500 ± 1400

Nourishment executed in time horizon?
no
yes

77.2
22.8

0.228 ± 0.42

Time Horizon
One
Five
Ten

34.1
33.5
32.4

4.59 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

55.6
22.2
22.2

1987 ± 13

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

77.1
5.14
12.3
0.68
4.80

0.51 ± 1.1

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

77.1
13.7
5.22
2.69
1.31

33.2 ± 110

 
 

Figure 3.1 Bayesian network – prior probabilities 

3.3 Example 1: no nourishment versus nourishment 
To assess the general effects of nourishments, in Figure 3.2 and Figure 3.3 the node 
nourishment executed in time horizon (no/yes) has been respectively constrained. 
When we only look at transects which have been nourished (Figure 3.3), it is possible to 
see that all chosen indicators (probability of failure Pf, MDV and MKL) show an 
improvement with respect to the case no nourishment. This can be seen both, in an 
increase of the number of transects showing a trend towards a safer situation, as well 
as a relative improvement in the values of these indicators. As an example, when 
looking at transects which have never been nourished, only 45.4 % of them show a 
tendency towards an increase in MKL, while 48.8 % show a decrease. When we look at 
transects which have experienced at least one nourishment during the different time 
windows, the number of transects which have experienced an increase in MKL goes up 
to 58.1 %. The average relative change in MKL increases from 1.75 m up to 7.62 m.  
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This confirms both hypothesis 1 and 2 of this project, that nourishments lead to a 
positive (seaward) development of a number of chosen indicators and, as a 
consequence, of the safety levels (section 1.1).  
 
Figure 3.3 also shows that the most common Nourishment Type, when the time interval 
is not constrained, is beach nourishment (53.7 % of the cases), followed by shoreface 
nourishments (22.3 %) and dune nourishments (2.67 %). In 20.8 % of the cases, 
different type of nourishment have been implemented (Multiple nourishments). 
 
In most cases, nourishments have a volume between 0 and 100 m3/m/year (59.4 %), 
some of them have a volume between 100 and 200 (22.6 %), and only few of them a 
volume between 200 and 400 m3/m/year (11.6 %), and more than 400 m3/m/year (5.62 
%). 

Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.52
6.31
41.9
40.4
9.14
1.70

1.75 ± 23

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.41
5.37
21.4
40.7
15.9
13.2

34.8 ± 99

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

2.45
19.1
31.6
31.6
14.0
1.14

2.24 ± 6.6

% of transects at which Pf: 
decrease
same
increase

52.1
1.75
46.1

-0.0603 ± 0.99

% of transects at which MDV:
decrease
same
increase

30.1
2.60
67.3

0.371 ± 0.91

% of transects at which MKL: 
decrease
same
increase

48.8
5.83
45.4

-0.0334 ± 0.97

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

10.3
23.8
5.42
16.1
9.19
8.44
17.8
8.92

7002600 ± 1400

Nourishment executed in time horizon?
no
yes

 100
   0

0

Time Horizon
One
Five
Ten

38.6
32.6
28.8

4.28 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

64.0
16.6
19.4

1986 ± 13

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

99.7
.087
.087
.087
.087

0.00871 ± 0.16

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

99.6
0.17
.097
.059
.042

0.746 ± 19

 
Figure 3.2 Example 1: no nourishment implemented 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.35
4.10
27.2
54.5
11.7
2.17

7.62 ± 22

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

2.68
4.20
16.7
46.6
16.3
13.5

40.9 ± 95

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

3.34
22.7
36.5
27.3
8.68
1.41

2.05 ± 7.2

% of transects at which Pf: 
decrease
same
increase

56.9
11.0
32.1

-0.248 ± 0.91

% of transects at which MDV:
decrease
same
increase

23.5
7.75
68.7

0.452 ± 0.85

% of transects at which MKL: 
decrease
same
increase

31.6
10.3
58.1

0.265 ± 0.91

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

14.5
38.2
10.1
6.43
13.4
14.5
1.96
0.95

7001900 ± 1300

Nourishment executed in time horizon?
no
yes

   0
 100

1

Time Horizon
One
Five
Ten

19.0
36.7
44.3

5.64 ± 3.2

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

27.0
41.3
31.7

1993 ± 11

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

0.55
22.3
53.7
2.67
20.8

2.21 ± 1

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

0.76
59.4
22.6
11.6
5.62

143 ± 190

 
Figure 3.3 Example 1: only transects with nourishments 

3.4 Example 2: Time interval 1965-1990 / 1991-2000 / 2001-2010 
In this example, the relation between different time windows, nourishment schemes and 
change in indicators was assessed by constraining the node Time Interval. Figure 3.4 
shows the values assumed by the different indicators for the time window 1965 and 
1990. First of all, it is possible to see that most of the transects were not nourished 
(Nourishment executed in time window: no = 88.9%; yes = 11.1%). As a consequence, 
46.8% of the transects had in increase in MKL, and 47.1% a decrease with an average 
relative seaward change of +2.34 m. Nevertheless, a large number of transects was 
already experiencing an increase in MDV (increase in 67.3% of the transects, decrease 
in 29.7% of the transects). Safety level represented by the probability of failure was also 
improving in 52.7% of the transects and worsening in 44.8 %. 

 



 

 

 
 
 
 
 

 
Assessment of the Nourishment Efficiency Using a Bayesian Modelling Approach 

 

2 November 2012, final 
 

14 of 37 
 

 
In 1991-2000 nourishments started being widely applied (Nourishment executed in time 
window: no = 57.7%; yes = 42.3%) (Figure 3.5). In particular, nourishments were built in 
the form of beach nourishments (Nourishment type: shoreface = 5.43%; beach = 
28.8%). The effect on the indicators was clear as all indicators showed a relative 
increase with respect to the previous situation. The MKL increased at 52.0 % of the 
transects with an average seaward shift of 4.4 m. 
 
In 2001-2010 nourishments were also widely implemented (Nourishment executed in 
time window: no = 67.5%; yes = 32.5%) (Figure 3.6). However, in this time window 
nourishments were mainly built in the form of shoreface nourishments (shoreface = 
17.3%; beach = 5.32%). The relative effect on the indicators was once again an 
improvement with respect to the previous time horizon, however slightly less clear than 
for the time window 1991-2000. As an example, MKL increased in 48.4% of the 
transects with an average seaward shift of 3.65 m. 
 
Once again, this example helps confirming both hypothesis given in Section 1.1 that 
nourishments leads to a positive development of the indicators and as a consequence 
of the safety levels. 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.51
6.10
40.5
41.8
9.41
1.75

2.34 ± 23

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.37
5.30
21.1
41.1
15.9
13.2

35.1 ± 99

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

2.53
19.5
32.1
31.2
13.5
1.16

2.22 ± 6.7

% of transects at which Pf: 
decrease
same
increase

52.7
2.50
44.8

-0.0792 ± 0.98

% of transects at which MDV:
decrease
same
increase

29.7
3.00
67.3

0.375 ± 0.91

% of transects at which MKL: 
decrease
same
increase

47.1
6.17
46.8

-0.00293 ± 0.97

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

10.7
25.4
5.94
15.1
9.66
9.10
16.1
8.03

7002600 ± 1300

Nourishment executed in time horizon?
no
yes

88.9
11.1

0.111 ± 0.31

Time Horizon
One
Five
Ten

36.4
33.0
30.5

4.43 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

 100
   0
   0

1977.5 ± 7.2

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

88.9
0.17
8.50
1.04
1.38

0.258 ± 0.77

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

88.9
9.11
1.21
0.31
0.44

10.8 ± 62

 
Figure 3.4 Example 2:  time interval 1965 - 1990 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.44
5.35
35.5
46.3
10.5
1.94

4.4 ± 23

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.07
4.83
19.2
42.9
16.4
13.6

38.3 ± 98

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

2.86
21.2
33.8
29.2
11.8
1.21

2.13 ± 6.8

% of transects at which Pf: 
decrease
same
increase

55.3
4.74
40.0

-0.153 ± 0.96

% of transects at which MDV:
decrease
same
increase

27.1
3.68
69.3

0.422 ± 0.89

% of transects at which MKL: 
decrease
same
increase

41.3
6.74
52.0

0.107 ± 0.96

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

12.1
29.9
7.42
12.0
11.0
11.0
11.1
5.55

7002300 ± 1800

Nourishment executed in time horizon?
no
yes

57.7
42.3

0.423 ± 0.49

Time Horizon
One
Five
Ten

30.3
34.3
35.4

4.86 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

   0
 100

   0
1995 ± 2.9

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

57.3
5.43
28.8
0.22
8.28

0.968 ± 1.3

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

57.3
26.9
12.4
2.87
0.45

44.4 ± 88

 
Figure 3.5 Example 2: time interval 1991 - 2000 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.46
5.56
36.9
45.5
9.75
1.81

3.65 ± 23

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.11
4.89
19.4
43.6
15.8
13.1

36.8 ± 97

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

2.76
19.8
33.3
30.8
12.0
1.30

2.21 ± 7

% of transects at which Pf: 
decrease
same
increase

52.5
6.30
41.2

-0.113 ± 0.96

% of transects at which MDV:
decrease
same
increase

27.4
5.79
66.8

0.394 ± 0.89

% of transects at which MKL: 
decrease
same
increase

42.9
8.62
48.4

0.0551 ± 0.95

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

11.6
28.5
6.95
13.0
10.5
10.4
12.7
6.33

7002400 ± 1200

Nourishment executed in time horizon?
no
yes

67.5
32.5

0.325 ± 0.47

Time Horizon
One
Five
Ten

32.2
33.9
33.9

4.73 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

   0
   0

 100
2005 ± 2.9

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

67.3
17.3
5.32
0.23
9.88

0.681 ± 1.2

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

67.3
11.8
8.04
8.46
4.36

78.2 ± 190

 
Figure 3.6 Example 2: time interval 2001 – 2010 
 

3.5 Example 3: One-year trend shoreface versus beach nourishment 
In this section, the instantaneous effect of shoreface and beach nourishments is 
compared by constraining the Time Horizon to One year, by selecting only transects at 
which Nourishment is executed in time horizon and respectively the Nourishment Type 
to Shoreface and Beach. In Figure 3.7, the effect of shoreface nourishments shows a 
general improvement of the indicators, which however becomes clearer in Figure 3.8, 
when the focus is on beach nourishments. As an example, 51.1 % of the transects at 
which a shoreface nourishment was applied show an increase in MKL, while beach 
nourishments leads to a seaward migration of the MKL at 61.1 % of the transects 
characterized by beach nourishments.  
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As it is logical to expect, when sand is put directly on the beach, this has an immediate 
effect on MKL, MDV and safety levels. The difference between shoreface and beach 
nourishments effects become smaller when looking at a Time Horizon of Ten years 
(Section 3.6). 
 
In case of shoreface nourishments, the average seaward migration of MKL is equal to 
7.72 m, while in case of beach nourishments it is equal to 6.85 m. Nevertheless, it is 
important to point out that the comparison between the two figures is between 
shoreface and beach nourishments with different volumes. The average volume of 
shoreface nourishments as shown by the variable Nourishment Volume is 205 m3/m/yr, 
while the average volume of beach nourishments is 95.4 m3/m/yr, since beach 
nourishments are usually smaller. The efficiency of beach nourishments on a time 
horizon of 1 year would be even more pronounced if the comparison was extrapolated 
to shoreface and beach nourishments with the same volume. 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.33
3.84
25.4
58.2
10.3
1.92

7.72 ± 21

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

2.92
4.57
18.1
50.6
13.0
10.8

32.2 ± 91

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

3.20
17.0
35.1
34.4
8.19
2.08

2.47 ± 8.7

% of transects at which Pf: 
decrease
same
increase

43.6
23.1
33.4

-0.102 ± 0.87

% of transects at which MDV:
decrease
same
increase

25.5
19.7
54.8

0.294 ± 0.85

% of transects at which MKL: 
decrease
same
increase

29.5
19.4
51.1

0.216 ± 0.87

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

4.55
51.7
4.82
9.87
15.5
11.3
1.85
0.36

7001900 ± 1600

Nourishment executed in time horizon?
no
yes

   0
 100

1

Time Horizon
One
Five
Ten

 100
   0
   0

1

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

1.47
23.2
75.3

2002.3 ± 6

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

   0
 100

   0
   0
   0

1

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

0.41
49.3
20.1
18.2
12.0

205 ± 250

 
 
Figure 3.7 Example 3: One-year trend shoreface nourishment 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.38
4.54
30.2
50.4
12.3
2.28

6.85 ± 23

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

2.79
4.39
17.4
44.6
16.8
14.0

41.2 ± 97

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

3.20
24.3
34.0
26.5
10.9
1.11

1.99 ± 6.5

% of transects at which Pf: 
decrease
same
increase

58.6
5.82
35.6

-0.229 ± 0.94

% of transects at which MDV:
decrease
same
increase

24.6
4.42
71.0

0.464 ± 0.86

% of transects at which MKL: 
decrease
same
increase

35.1
3.86
61.1

0.26 ± 0.95

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

20.1
28.1
15.1
5.25
14.1
13.7
2.37
1.18

7001890 ± 730

Nourishment executed in time horizon?
no
yes

   0
 100

1

Time Horizon
One
Five
Ten

 100
   0
   0

1

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

38.5
52.0
9.50

1989 ± 11

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

   0
   0

 100
   0
   0

2

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

.060
74.8
16.7
6.94
1.52

95.4 ± 120

 
Figure 3.8 Example 3: One-year trend beach nourishment 

3.6 Example 4: Ten-year trend shoreface versus beach nourishment 
In this section, the long-term effect of shoreface and beach nourishments is compared 
by constraining the Time Horizon to Ten years and respectively the Nourishment Type 
to shoreface  (Figure 3.9) and beach (Figure 3.10 ). In this case, the long term effects of 
beach and shoreface nourishments on Pf, MDL and MKL are comparable. As an 
example, MKL increases at 58.3 % of the transects in case of shoreface nourishments, 
and at 62.7 % of the transects in case of beach nourishments. This corresponds to a 
relative average seaward shift in MKL of  8.59 m in case of shoreface nourishment, 
against 8.23 m in case of beach nourishment. This behaviour supports the idea that 
shoreface nourishments do not have an immediate effect on the nearshore morphology 
(Section 3.5) but rather a delayed effect.  
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.31
3.68
24.4
57.7
11.7
2.18

8.59 ± 22

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

2.01
3.16
12.5
51.5
16.8
14.0

46.9 ± 92

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

3.51
22.3
36.1
29.1
7.44
1.51

2.05 ± 7.5

% of transects at which Pf: 
decrease
same
increase

55.1
13.2
31.7

-0.234 ± 0.9

% of transects at which MDV:
decrease
same
increase

17.6
11.4
71.0

0.534 ± 0.78

% of transects at which MKL: 
decrease
same
increase

28.3
13.3
58.3

0.3 ± 0.88

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

4.55
51.7
4.82
9.87
15.5
11.3
1.85
0.36

7002000 ± 0

Nourishment executed in time horizon?
no
yes

   0
 100

1

Time Horizon
One
Five
Ten

   0
   0

 100
9

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

1.47
23.2
75.3

2002.3 ± 6

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

   0
 100

   0
   0
   0

1

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

0.41
49.3
20.1
18.2
12.0

205 ± 250

 
Figure 3.9 Example 4: Ten-year trend shoreface nourishment 
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Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

0.33
3.98
26.4
54.3
12.6
2.34

8.23 ± 22

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

2.92
4.59
18.3
43.5
16.8
13.9

40.2 ± 98

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

3.47
24.3
37.8
24.6
8.44
1.34

1.97 ± 7.1

% of transects at which Pf: 
decrease
same
increase

60.7
9.23
30.1

-0.306 ± 0.9

% of transects at which MDV:
decrease
same
increase

25.8
3.40
70.8

0.451 ± 0.87

% of transects at which MKL: 
decrease
same
increase

30.7
6.61
62.7

0.32 ± 0.91

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

20.1
28.1
15.1
5.25
14.1
13.7
2.37
1.18

7001900 ± 1100

Nourishment executed in time horizon?
no
yes

   0
 100

1

Time Horizon
One
Five
Ten

   0
   0

 100
9

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

38.5
52.0
9.50

1989 ± 11

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

   0
   0

 100
   0
   0

2

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

.060
74.8
16.7
6.94
1.52

95.4 ± 120

 
Figure 3.10 Example 4: Ten-year trend beach nourishment 
 

3.7 Example 5: Relation between sand volumes in the MKL zone and probability of 
failure 
In this section, the effects of a possible change of sand volumes in the cross-shore 
profile on the probability of failure are assessed by constraining the MKL value at first to 
an average change equal to -37.5 m (Figure 3.11) and then to an average change 
equal to +12.5 m (Figure 3.12). A negative change in MKL is representative for coastal 
erosion, while a positive change would represent accretion. In the first case, the 
landward MKL shift would lead to a pronounced peak in Relative change of Pf between 
2 and 10, which means that at most transects the probability of failure will increase 
between 2 and 10 times. In the second case, the seaward MKL shift would lead to a 
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peak in the distribution of Relative change of Pf between 0.5 and 1, meaning that at 
most transects the probability of failure will decrease to a value between half of the 
actual value and the actual value. This means that to an approximate shift in MKL equal 
to 50 m, a change in Pf equal to one order of magnitude can be expected. These 
results are in line with the prediction shown in Arcadis (2011) and Santinelli (2012), who 
predicted a change in Pf equal to one order of magnitude for a change in MKL equal to 
42.2 m. 
 
 

Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

   0
 100

   0
   0
   0
   0

-37.5 ± 7.2

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.32
5.22
20.7
41.6
15.9
13.2

35.6 ± 99

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

2.30
6.36
13.8
20.9
51.2
5.50

6.53 ± 14

% of transects at which Pf: 
decrease
same
increase

23.6
3.41
73.0

0.495 ± 0.85

% of transects at which MDV:
decrease
same
increase

29.3
3.48
67.3

0.38 ± 0.91

% of transects at which MKL: 
decrease
same
increase

99.9
.083
.065

-0.998 ± 0.058

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

10.9
26.1
6.19
14.6
9.86
9.35
15.3
7.64

7002500 ± 1200

Nourishment executed in time horizon?
no
yes

83.9
16.1

0.161 ± 0.37

Time Horizon
One
Five
Ten

35.6
33.6
30.8

4.47 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

58.3
20.4
21.3

1987 ± 13

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

83.8
3.70
8.91
0.55
3.03

0.353 ± 0.9

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

83.8
10.4
2.91
1.83
0.98

22.9 ± 95

 
 
Figure 3.11 Example 5: Effect of landward shift in MKL on probability of failure Pf.  
 
 

 
 



 

 

 
 
 
 
 

 
Assessment of the Nourishment Efficiency Using a Bayesian Modelling Approach 

 

2 November 2012, final 
 

24 of 37 
 

 

Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

   0
   0
   0

 100
   0
   0

12.5 ± 7.2

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

3.20
5.03
20.0
42.5
16.0
13.3

36.6 ± 98

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

1.69
26.3
50.3
19.3
1.92
0.41

1.09 ± 3.9

% of transects at which Pf: 
decrease
same
increase

76.3
4.46
19.2

-0.571 ± 0.79

% of transects at which MDV:
decrease
same
increase

28.2
4.19
67.6

0.394 ± 0.9

% of transects at which MKL: 
decrease
same
increase

.009
15.6
84.4

0.843 ± 0.36

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

11.5
27.9
6.73
13.4
10.4
10.2
13.3
6.65

7002400 ± 1600

Nourishment executed in time horizon?
no
yes

71.6
28.4

0.284 ± 0.45

Time Horizon
One
Five
Ten

33.3
33.4
33.3

4.67 ± 3.3

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

53.2
23.6
23.2

1988 ± 13

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

71.4
6.46
14.9
0.85
6.41

0.645 ± 1.2

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

71.4
16.3
7.08
3.52
1.73

43.2 ± 120

 
Figure 3.12 Example 5: Effect of seaward shift in MKL on probability of failure Pf.  
 

3.8 Example 6: Plan of a nourishment strategy 
In this section, the Bayesian network is used to plan a Shoreface nourishment, which 
should enable to reach a certain objective. The objective that is prescribed is reaching 
an average seaward shift of MKL between 0 and 25 m per year (in average 12.5 m per 
year), in subarea 2 and looking at a Time Horizon of 10 years.   
From the network it can be derived that the objective can be achieved by nourishing in 
average subarea 2 with 205 m3/m/yr during the 10 year time window.  
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Besides the relative improvement in MKL, this nourishment strategy will lead to an 
average relative increase of MDV of 47 m3/m/yr, and a probability of failure decreasing 
mainly to a value between half of the actual value and the actual value. 
 

Rel. change MKL [m/yr]
-100 to -50
-50 to -25
-25 to 0
0 to 25
25 to 50
50 to 100

   0
   0
   0

 100
   0
   0

12.5 ± 7.2

Rel. change MDV [m^3/m/yr]
-350 to -100
-100 to -50
-50 to 0
0 to 50
50 to 100
100 to 350

2.02
3.16
12.5
51.4
16.9
14.0

47 ± 92

Rel. change Pf [-]
0.01 to 0.1
0.1 to 0.5
0.5 to 1
1 to 2
2 to 10
10 to 100

1.80
23.5
45.0
26.6
2.40
0.72

1.35 ± 5.2

% of transects at which Pf: 
decrease
same
increase

64.1
13.1
22.8

-0.413 ± 0.84

% of transects at which MDV:
decrease
same
increase

17.6
11.2
71.2

0.535 ± 0.78

% of transects at which MKL: 
decrease
same
increase

.004
22.4
77.6

0.776 ± 0.42

Subarea
subarea1
subarea2
subarea3
subarea4
subarea5
subarea6
subarea7
subarea8

   0
 100

   0
   0
   0
   0
   0
   0

7001220 ± 350

Nourishment executed in time horizon?
no
yes

0.19
99.8

0.998 ± 0.043

Time Horizon
One
Five
Ten

   0
   0

 100
9

Time Interval
1965 to 1990 
1991 to 2000 
2001 to 2010

0.13
26.0
73.9

2002.4 ± 5.3

Nourishment Type
None
Shoreface
Beach
Dune
Multiple

   0
 100

   0
   0
   0

1

Nourishment Volume [m^3/m/yr]
0
0 to 100
100 to 200
200 to 400
400 to 1200

0.15
48.2
22.0
17.9
11.7

205 ± 250

 
 
Figure 3.13 Example 6: Plan of a nourishment scheme to reach a pre-defined objective 
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4  Conclusions 

In this study, a Bayesian network has been built to assess the effects of nourishments 
on a number of indicators using as input, data defined at transect level for the North 
Holland coast.  The Bayesian approach is in fact very suitable to the application, since it 
can be easily used to evaluate cause and effects (e.g. nourishment and effects on 
coastal indicators). Moreover, being based on a probabilistic method, allows accounting 
for uncertainties. As indicators for short- and medium- term safety, probability of failure, 
MKL, and MDL have been selected. 
A number of applications have been shown, supporting the idea that, in general, 
nourishments have lead to an improvement of the different indicators with respect to the 
non- nourishment case. This also confirms the starting hypothesis of the current project 
“Toestand van de Kust”: nourishments have positive effect on different indicators. In 
particular, for short-term effects, beach nourishments are more effective than shoreface 
nourishments. However, in the long term (10-year time scale) the two effects become 
comparable.  
Moreover, changes in volumes in the cross-shore profiles appear to influence directly 
the probability of failure of the first dune row. An average shift in MKL of 50 m, can lead 
to a change in probability of failure of about 1 order of magnitude. 
The last example shows how the network can also be used to plan a nourishment 
strategy in order to achieve a certain objective (e.g. average improvement of MKL of 
12.5 m/yr), defining types and volumes of nourishments which can be used to reach the 
objective. 
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5 Recommendations for Future Work 

A number of recommendations for future studies are suggested in this chapter and can be 
used to improve the work presented in this report. 
 

 Use of heterogeneous data (model + measurements) as input to the network. It is 
possible to use as input to the network synthetic data derived by running a model 
simulation (e.g. based on UNIBEST-CL or Delft3D).  In this way, it could be possible 
for example to assess the effects of nourishments at transects where nourishments 
have never been executed. In the same way, the effect of very large nourishments, 
which are still limited in number, could also be evaluated. 

 The study has only focused on the North Holland coast. The study can be extended to 
the rest of the Dutch coast. The effect of a nourishment derived using the network 
implemented for North Holland could be used for example as predictive tool for South 
Holland, which has similar morphological characteristics, and then verified once the 
new network is built. 

 Additional indicators could be added to the network to describe other physical 
parameters e.g. storminess parameter, sloping factor... Also, if necessary, new 
relations could be implemented by adding additional arrows. However, it is important 
to keep in mind that adding new variables and arrows might complicate the network 
making it more difficult to define clear interdependences between variables. 

 The discretization of variables is a necessary step to build the network, which 
however is subjective and can affect the results. Different discretisation procedures 
can be evaluated. 

 The network is still under development and improvements are still needed to be able 
to use it as management tool. The interface for example could be improved to make it 
more user-friendly. 
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A List of Matlab functions 

A Bayesian network is a probabilistic graphical model based on data. Data is entered as 
cases to the Bayesian network. A case is a record in the database and represents an event. 
The input database is built as a matrix with, on every line, a unique case. For this study, five 
Matlab-scripts were used to organize a dataset that serves as input to the Bayesian network 
constructed in Netica (www.norsys.com) (Table A.1). The scripts, together with an example 
are available in the OpenEarth repository.  
https://svn.oss.deltares.nl/repos/openearthmodels/trunk/deltares/CoastalState_Bayesian/ 
 
Table A.1 Lists of Matlab script used to construct the Bayesian network. 
Name Matlab script/function Description 
csb_collect_data.m Main script calls all the other functions. 
csb_getIndicator.m Obtain data of the indicators from the server. 
csb_getNourishVol.m Obtain nourishment data from the server. 
csb_createDataMatrix.m Organize the data in case-style (every row in 

the matrix is a unique case). 
netica_write_case_file.m Write data to an ascii file such that Netica can 

read the data. 
 
A more detailed description can be found in the help of the functions.  
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B How to build a Bayesian network? Example North Holland 
Coast 

This appendix aims to clearly describe the steps to make in order to construct a Bayesian 
network. As example, the Bayesian network described in the current study will be used. The 
procedure given in Table B.1 was followed and is explained step by step. 
 
Table B.1 List of actions to construct a Bayesian network. 
 Action Description 
1 Download Netica  Download Netica software package. 
2 Create nodes Select variables that play a role in the 

system. 
3 Draw arrows between the nodes Determine correlations between the 

variables of interest. 
4 Discretize variables Select bin ranges for the (continuous) 

variables in your network. 
5 Train Bayesian network Learn relations between the variables with 

the use of data and quantify the relations in 
conditional probability tables. 

6 Update Bayesian network with (new) 
information 

Pick a certain combination of variables (a 
so-called case) and evaluate the change of 
the variable of interest (here, coastal 
indicator). 

 

B.1 Download Netica 
The Bayesian network development software Netica (www.norsys.com) has been used within 
this project. There are several available Bayesian software packages (see wikipedia for a 
complete list). The choice for Netica has two main reasons. Firstly, Netica is widely used. 
Secondly, Netica is user friendly such that it is simple to build a Bayesian network from 
scratch. Netica is a free software package; however, the free version has a limitation to 15 
nodes in the size of the network that can be built with it. However, in the OpenEarthModels a 
license key is available that allows to built networks larger than 15 nodes. 

B.2 Create Nodes 
After downloading the Netica software package, it is possible to start ‘building’ the network. 
The building part is divided into two actions: create nodes (this section) and connect nodes 
(next section). 
In a Bayesian network, nodes represent variables. In this study, the effect of nourishment on 
coastal indicators is investigated. Therefore, the selected variables represent either causes (a 
nourishment) and effects (e.g. change in dune volume). Other variables were added to 
describe the spatial and temporal variations of the variables. The list of variables, as well as 
the objective which supported the choice of these variables, are shown in Table B.2. 
 
 
 
 
 



 

 

 
 
 
 
 

 
Impact Assessment Nourishments on Coastal Indicators using a Bayesian Network 

 

2 November 2012, final 
 

B-2  
 

Table B.2 List of nodes in the Bayesian network described in this study. 
Index Name Description Objective 

1 Sub-area Jarkus transect indices for different 
sub-areas in North Holland. 

Evaluate the 
nourishment policy over 

space. 
2 Time Interval Years. Evaluate the 

nourishment policy over 
time. 

3 Time Horizon Time frames. Evaluate nourishment 
effects on the short-, 
medium-, and long- 

term. 
4 Nourishment 

executed 
Binary: yes or no. Evaluate the effects of 

implementing a 
nourishment or not. 

5 Nourishment type It describes the type of nourishment 
implemented: shoreface, beach, 
dune, multiple (combination of 
different nourishments), and no 

nourishment. 

Evaluate the effects of 
implementing different 
type of nourishments. 

6 Nourishment 
volume 

Nourished volume per year 
[m3/m/yr]. 

Evaluate the effect of 
different nourishment 

volumes. 
7 % of transects at 

which Pf [decrease, 
same, increase] 

It describes at how many transects 
the probability of failure will 
decrease, stay the same or 

increase. 

What will happen, in 
average, at the different 

transects to the 
probability of failure? 

8 % of transects at 
which MDV 

[decrease, same, 
increase] 

It describes at how many transects 
MDV will decrease, stay the same 

or increase. 

What will happen, in 
average, at the different 
transects to the MDV? 

9 % of transects at 
which MKL 

[decrease, same, 
increase] 

It describes at how many transects 
MKL will decrease, stay the same 

or increase. 

What will happen, in 
average, at the different 
transects to the MKL? 

10 Rel. change Pf [-] Order of magnitude of change in 
safety. 

Relative change in 
probability of failure 

(order of magnitude). 
11 Rel. change MDV 

[m^3/m/yr] 
Order of magnitude of change in 

dune volume. 
Relative change in dune 

volume (order of 
magnitude). 

12 Rel. change MKL 
[m/yr] 

Order of magnitude of change in 
MKL-position. 

Relative change in MKL 
(order of magnitude). 

 
How to add nodes? 
In Netica, it is simple to add nodes to your network. Click on the yellow oval icon in the 
taskbar to add a nature node to your network. When double-clicking on the node, the node 
settings are open and node options can be set. The node settings used in the current study 
are shown in Table B.3. 
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Table B.3 Node settings used in the current study 
Option Setting Useful information 
Name Variable 

dependent 
Name of the node. Make sure this name is equal to 
the name of the column in your input dataset. 

Title Variable 
dependent 

Title of the node as shown in the network.  

Type Nature Variables used represent nature nodes. 
Discrete/Continuous Variable 

dependent 
Use discrete in case of a fixed number of states, for 
example yes or no nourishment. Use continuous 
otherwise. 

State Variable 
dependent 

A node is represented by states (bins). This process 
is called discretization and described in section B.4. 

B.3 Draw arrows between the nodes 
In a Bayesian network two nodes are directly correlated if there is an arrow between the 
nodes. This arrow is always directed, this means it is pointing from one node to the another 
one.  
In a Bayesian network correlation means direct influence, also called statistical dependency 
indicating that the dependency does not need to be causal or physical. Here, an arrow is 
drawn when a physical relation exists according to our knowledge of the underlying 
processes. 

How to add a link? 

Click on the arrow symbol in the taskbar to connect two nodes and draw an arrow from the 
parent node to the child node. You can draw arrows between all nodes, however cycles (or 
loops) results in an error because a node is affecting itself.  

B.4 Discretise variables 
Because Netica works with categories instead of numbers, it is required to represent the 
continuous physical processes with a small number of discrete categories. This process 
hereafter referred as discretisation results in a number of bins, representing the estimated 
probability density distribution (i.e. histogram) for each variable (Figure B.1). With the 
discretisation process some information will get lost. For example a bin with an interval of [1; 
2] cannot distinguish a value of 1.1 and 1.9 since both numbers fall in the same bin.  

 
Figure B.1 Graphical representation of a discretisation procedure. 
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On the other hand, a very high number of bins will affect the dimensionality and complexity of 
the Bayesian network. Moreover, if there are too many bins relative to the size of the training 
data set, very few observations (or hits) will fall in some of the probable states and therefore 
they will not be well constrained. Too few bins, however, may not resolve the variability of the 
variables, blurring important information.   

The choice made to discretise the nodes in this network is presented in Table B.4. As a 
general guideline, it is important to minimize the number of bins in such a way to obtain a 
statistically robust network but also computationally efficient.  

Table B.4 List of variable with the related number of bins and the choice for the number of discretisation bins.  
Variable Continuous/

Discrete 
#bins Choice for discretization thresholds 

Subarea Continuous 8 Sub-areas within region North-Holland. Transects 
within each sub-region have a similar nourishment 
strategy and natural behaviour (see Giardino et al 
2012). 

Time Interval Continuous 3 Three periods to distinguish between three 
nourishment strategies. 

Time Horizon Discrete 3 To evaluate short-, medium-, and long-term effects 
of a nourishment on the coastal indicators 

Nourishment 
executed? 

Discrete 2 Is there any nourishment executed in that given 
year in that subarea over given time interval? 

Nourishment 
type 

Discrete 5 To distinguish between all the type of nourishment 
and no nourishment. 

Nourishment 
volume 

Continuous 5 Nourishment volume per linear meter divided over 
the time horizon. Bin ranges flexible, maximum 
fixed to exclude low probability extremes that are 
physically not significant. 

% of 
transects at 
which Pf: 

Discrete 3 Increase/decrease in safety. Relatively small 
changes are filtered out and considered as similar. 

% of 
transects at 
which MDV 

Discrete 3 Increase/decrease in dune volume. Relatively small 
changes are filtered out and considered as similar. 

% of 
transects at 
which MKL 

Discrete 3 Increase/decrease in MKL position. Relatively small 
changes are filtered out and considered as similar. 

Rel. change 
in probability 

of failure 

Continuous 6 Definite magnitude representing the relative 
changes. 

Rel. change 
in MDV 

Continuous 6 Definite magnitude representing the relative 
changes. 

Rel. change 
in MKL 

Continuous 6 Definite magnitude representing the relative 
changes. 

 

How to discretize variables in Netica? 
Only continuous variables need to be discretized. For instance the variable ‘nourishment type’ 
contains five unique values, representing the five types of nourishment. In this case, the 
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number of bins equals five and represent the five nourishment types. For other variables 
discretization is necessary. 
The option discretization can be selected above the dialog box, in the node settings. Type the 
discretization thresholds in this dialog box. Every line represents one threshold so press enter 
when adding one threshold. When ready press ‘okay’ and the node is discretised. Because at 
this phase there is still no data entered to the network, Netica does not know how the 
information is distributed between the nodes. Therefore, the different nodes are characterized 
by a uniform probability distribution. By default, the name of a state is defined by the range of 
the particular state. In the same way as selecting ‘discretisation’ one can select ‘states’. Type 
here the name of the specific bin as you want to be appearing in the network.  

B.5 Train Bayesian network 
After discretizing the Bayesian network, it is time to train the network with data. A training 
algorithm is used to learn the relations between the variables in the network. For a detailed 
description on how the training algorithm works see the Netica online help. 
After training, the prior probabilities of the Bayesian network are shown. Basically, for every 
node a histogram is given for the data entered. For all the nodes also the mean and standard 
deviation is given in the last line of each box. 
 
How to train a Bayesian network in Netica? 
For this project, the training algorithm ‘Counting-Learning’ is used. To do so select, ‘incorp 
case file’ in the task bar ‘cases’. Select the dataset (with .cas extension) that serve as training 
set for your Bayesian network. First Netica will ask what the degree which is for learning. This 
is one by default and we advice to keep it like this. Than Netica will ask you what to do with 
the values that fall outside your outer bin ranges. In order to prevent Netica to extend your bin 
ranges press disregard the values that fall outside the bin ranges. After the learning phase 
the Bayesian network is trained, so the conditional probability tables are filled. To have an 
impression of how such a cpt looks like, select a node and press the green italic F in the task 
bar).  

B.6 Update Bayesian network 
Now that the Bayesian network is trained, it is possible to infer in the network. This can be 
done by adding new information (data) or constraining certain variables and evaluate what 
happens with the other variables. With the constraining, it is possible to simulate a (future) 
event and analyze what effect this will have. This effect is shown by a change in the 
probability distribution. Adding new data or constraining nodes, result in a change in the 
probability distributions, also called posterior distribution.  
 
How to constrain nodes? 
It is quite simple to constrain a node to one specific bin. Just click on the name of the bin, (so 
not the black bar itself), and the bin will be constrained. The ‘constrained’ node turns grey and 
the probability of selected bin turns into 100%. To ‘de-constrain’ a bin press on the bin name 
again. 




