
De t r s
Enabling Delta Ufe

WTI2017 Failure Mechanisms -
Piping Kernel

Technical Design

WTI2017 Failure Mechanisms -
Piping Kernel

Technical Design

John Bokma

© Deltares, 2015

WTI2017 Failure Mechanisms -
Piping Kernel
Technical Design

John Bokma

Version: 1.2

Date: 27 July 2015

Client Waterdienst, Rijkswaterstaat
WTI-2017 Failure mechanisms - Piping kernel

Title
Technical Design

Abstract

This document contains the technical design for a so-called piping kernel, which forms eventually a part
the WTI 2017 failure mechanism library. The kernel comprises different software components for
predicting the occurrence of progressive internal sand erosion in an aquifer under levees and structures.
This erosion occurs between the so-called entrance and exit point, after preceding occurrence of uplift of
the cover layer (if existing), and provided the occurrence of heave of sand particles at the exit point.

References
Version Author Date Remarks Review Approved by

1.1 John Bokma 26-03-2014 Rob Brinkman, Leo Voogt
/)//Ulrich Förster

1.2 John Bokma .~ 24-07-2015 Tom The, I~ iJ.eo-Voogt ,tVUlrich Förster
Project number 1209442.002 ""'I"

Keywords Piping, Kernel, WTI, Technical Design

Number of pages 27

Classification
Status final

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

Contents

1 Introduction 3
1.1 Purpose and scope of this document... 3

1.2 Other system documents 3

1.3 Assumptions and constraints 4

2 Technical Design 6

2.1 General 6
2.1.1 RingToets/Hydra-Ring 6
2.1.2 Other C# programs (including Matlab) 6

2.2 Description of the required functions 6
2.2.1 Definition of the complex types 7
2.2.2 Determination of the exit point 8
2.2.3 Determination of the uplift margin 9
2.2.4 Determination of the effective height and effective stress at exit point. 9
2.2.5 Determination of uplift safety 10
2.2.6 Determination of piping safety (without cuttoff wails) 10
2.2.7 Determination of the piping safety (with cuttoff walls) using Lane.13
2.2.8 Determination of heave safety (without cuttoff walls) 13
2.2.9 Determination of heave safety (with cuttoff wails) 14

3 Literature 15

A Full description of parameters 16
B Examples of implementation 20

B.1 Determination of the exit point 20

B.2 Determination of the uplift margin 22

B.3 Determination of effective height and effective stress at exit point 23

B.4 Determination of the uplift safety 23

B.5 Determination of the piping safety using Sellmeijer revised 24

B.6 Determination of the piping safety using Sellmeijer original 25

B.7 Determination of the piping safety using Bligh 25

B.8 Determination of the piping safety using Lane 26

B.9 Determination of the heave safety (without cuttoff walls) 26

B.10 Determination of the heave safety (with cuttoff walls) 27

https://repos.deltares. nI/repos/F ai IureMechan isms/F ai IureMecha nisms/DikesPipi ng/tru nk/doc 2

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

1 Introduction

1.1 Purposeand scope of this document

This document contains the technical design for a so-called piping kernel, which forms
eventually a part the WTI 2017 failure mechanism library. The kernel comprises
different software components for predicting the occurrence of progressive internal
sand erosion in an aquifer under levees and structures. This erosion occurs between
the so-called entrance and exit point, after preceding occurrence of uplift of the cover
layer (if existing), and provided the occurrence of heave of sand particles at the exit
point

The document will not give any background on the context of the WTI project and on
the derivation or motivation of the supported physical models. For this purpose the
reader is referred to the VTV2017 and to its supporting technical reports and their
background reports underneath.

This document will describe how the requirements and functional design are
implemented in the kernel. Note that REO 5 of the requirements and functional design
is not yet to be met so this will not yet be part of this document

1.2 Other system documents

The full documentation on the piping kernel comprises the following documents.

Title Content Authors Reviewer
Requirements and Description of the Timo John Bokma,
functional design requirements and Schweckend iek Erik Vastenburg

functional design.
Technical design This document John Bokma Rob Brinkman,

Ulrich Förtster,
Tom The

Technical specification Description of the John Bokma Pim Witlox,
arguments and usage Ulrich Förster
of different software
components,
generated from in-line
comment with
Doxygen

Test plan Description of the John Bokma, Paul Lindhaut,
different regression Virginie Trompille Ulrich Förtster
and acceptation rests,
including target
values.

Test report Actuated results of the Virginie Trompille Pim Witlox,
test plan. Ulrich Förster

https://repos.de!tares_ n!/repos/F ai!ureMechanisms/F ai!ureMecha nisms/DikesPiping/tru nk/doc 3

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

1.3 Assumptions and constraints

CNS 1 As a general constraint, the development process needs to comply with the general
process description for WTI software, contained in a separate document [lit 1J.

CNS 2 As a general constraint, the kernel needs to comply with the relevant general
requirements and further design rules for the programming, documentation and testing
of WTI software. This set of requirements and rules is contained in a separate
document [Lit 1].

CNS 3 As a WTI software constraint, the failure mechanism library will contain only
components for a deterministic analysis to calculate a factor of safety, with a choice
between different models for different (sub)mechanisms, that can be called separately.
The limit state function (LSF) for probabilistic analysis (using these models) will become
a separated part of the mechanism library. In case of different submechanisms, the limit
state functions will be supplied only per submechanism. The combination of these
submechanisms inside a certain probabilistic procedure is expected to be performed in
the external software (notably Hydra-Ring).

CNS 4 As a general WTI software constraint, all model constants need to be adaptable outside
the kernel, in order to allow for varying values during probabilistic analysis.

CNS 5 As a WTI software constraint, the failure mechanism library needs to support at least all
models that are prescribed for detailed assessment according to the VTV2017.

CNS 6 As a general WTI software constraint, the software interface (API) must allow usage
by Ringtoets, Hydra-Ring and MATLAB (test environment).

CNS 7 Besides the prescribed VTV-2017 model, it is assumed that also the VTV2006 piping
models for a single aquifer layer need to be supported temporary in the failure
mechanism library. The reason is that this will allow a comparison of calculation results
during the evaluation period (proeftoets).

CNS 8 The two-layer Sellmeijer model (based on a neural network trained with results from a
numerical model) will not be supported in the failure mechanism library. The two-layer
Sellmeijer model is compliant to single layer Sellmeijer oriqinal'. and used with PC-Ring
by the VNK project. The reason for not supporting it is that it requires a different subsoil
model definition, compared to the single layer models. This type of subsoil input will not
be supported by the assessment software itself (Ringtoets).

CNS 9 All supported erosion models require a constant thickness of the aquifer layer.
Derivation of this value from a 20 soil profile definition will not be part of the kernel.

CNS 10 The location of the "entrance point" is assumed to be user input. The location of the
"exit point" is also assumed to be user input. A Calculation Support Module is expected
to guide the user in finding the "exit point" and local damping-factor.

CNS 11 Usage of finite element models (FEM) for the determination of the piezometric head in
the aquifer, and/or the determination of a heave gradient and/or the direct determination
of the critical differential piping head will not be supported by RingToets as an implicit

1 When using this two layer VNK model for just one layer with constant thickness, the results become
comparable to the original one layer Sellmeijer model.

https://repos.deltares. nllrepos/F ai IureMechanisms/F ai IureMecha nisms/DikesPipi ng/tru nk/doc 4

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

part of a detailed analysis in 2017 (level 2a or 2b). External usage is instead assumed
to be part of an advanced analysis ("toetsen op maat").

https:/Irepos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 5

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

2 Technical Design

2.1 General

As described in the "Requirements and Functional Design", a number of different
calculation functions are required. Each of these functions requires its own specific
input, performs certain functions and produces its own specific output data. An overview
of all the functions is given in section 2.2.

The piping calculator must be usable in RingToets/HydraRing, other C#-programs as
well as Matlab (see CNS 6).

2.1.1 RingToets/Hydra-Ring
In order to be usable in RingToets/Hydra-Ring, the calculator provides access to all
required data objects via the assembly. This way, all data required to perform a
calculation can be set using RingToets. For performing the actual calculations and the
retrieval of the requested results, Hydra-Ring will provide delegates itself. A description
of the data objects can be found in the technical specification. The mechanism of the
delegates is documented in paragraph 2.3 of the RTO Design (Lit 2).

2.1.2 Other C# programs (including Matlab)
Other C# programs can use the same approach as RingToets/Hydra-Ring but can also
use the calculation functions defined in the main body of the assembly. A description of
the calculation functions can be found in section 2.2.

2.2 Description of the required functions
As described in the "Requirements and Functional Design", a number of different
calculation functions are required. As each of these functions requires its own specific
input, same input parameters are used in more than one function. Even more, an output
parameter of one function can be used as input for another function (e.g. the exit point
calculated by the ExitPointDeterminator is used by most other functions as input). For
this reason, the specification of all parameters used in the functions is given in annex A.

However, two of parameters (SurfaceLine and SoilProfile) are so called complex types
as they are data objects instead of so called simple types (Boolean, integer, string,
double, enumeration). Therefore the definition of these types is given in section 2.2.1.

Note that there are some restrictions and requirements:
all heights and levels must be towards the same reference level (e.g. NAP)
all coordinates must share the same coordinate system
Points on the surface line must be defined from left to right with increasing L­
coordinates.

For each function a class is designed to house the in- and output parameters as well as
the functions (methods) that are to be used to perform the actual actions (calculation
and validation).

The general setup per class is that all parameters are defined as properties. All classes
hold two functions, one for validation and one for calculation.

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 6

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

In Annex B, examples on using the classes are provided.

2.2.1 Definition of the complex types
The first complex type is the SurfaceLine. The surface line needed by the kernel starts
at the toe of the dike at polder side and should run to at least the end of the expected
uplift area at polder side.

The SurfaceLine is a data object of the PipingSurfaceLine class. This class has the next
input (properties) that have to be provided:

Name (type = string): the name of the surface line.
Points (type = List<PipingPoint>): a list of points of type PipingPoint defining
the surface line. For the definition of the PipingPoint, see below.

The class PipingPoint has the next properties:
X (type = double): the x-coordinate of the point in meters.
y (type = double): the y-coordinate of the point in meters.
Z (type = double): the z-coordinate of the point in meters.
Type (type = PipingCharacteristicPointType): the type of the point (if any).
PipingCharacteristicPointType is an enumeration with as possible options None
(= default value), ShoulderBaselnside, DikeToeAtPolder, DitchDikeSide,
BottomDitchDikeSide, BottomDitchPolderSide, DitchPolderSide.

Note that all points in the surface line must be defined from left to right (so with
increasing X-values). Also note that when used, the typed points must be from left to
right in the given order of the enumeration (so DikeToeAtPolder must be to the right of
the ShoulderBaselnside when both types are used).

Typing points is in fact optional. The kernel handles the surface line as follows:
DikeToeAtPolder and/or ShoulderBaselnside can be used to define the actual
start of the surface line. When either DikeToeAtPolder or ShoulderBaselnside is
used, that point will be used as the actual dike toe for the calculations. If both
types are used, ShoulderBaselnside is used. If neither is used, the first point of
the surface line is considered to be the start point.
DitchDikeSide, BottomDitchDikeSide, BottomDitchPolderS ide, DitchPolderS ide
should be used to define a ditch. Note that when a ditch is defined, all four types
must be used and in the correct order (as given, left to right).

The second complex type is the SoilSurface. This is a data object of the PipingProfile
class. This class has the next input (properties) that have to be provided:

Name (type = string): the name of the surface line.
BottomLevel (type = double): the overall bottom level of the profile.
Layers (type = List<PipingLayer»: a list of layers of type PipingLayer defining
the profile. The layers must be ordered from top to bottom. For the definition of
the PipingLayer, see below.

The class PipingLayer has the next properties:
Name (type = string): the name of the layer.
Toplevel (type = double): the top level of the layer
AbovePhreaticLevel (type = double): the unit weight above the phreatic level of
the soil/material in the layer.

https://repos.deltares. nl/repos/F ailu reMechan isms/F ai lureMecha nisms/DikesPipi ng/tru nk/doc 7

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

BelowPhreaticLevel (type = double): the unit weight below the phreatic level of
the soil/material in the layer.
DryUnitWeight (type = double) : the (oven) dry unit weight of the soil/material in
the layer.
IsAquifer (type = Boolean): indicates whether the layer is to be seen as aquifer
layer (true) or not (false).

Note that a profile must have at least one aquifer layer and that each layer has a
required minimum thickness of 0.001 m.

2.2.2 Determination of the exit point
To fulfil requirement 2 of the "Requirements and Functional Design", the class
ExitPointDeterminator is created as part of the Deltares.WTIPiping assembly.

To be able to determine the exit point, the next input (properties) is required:
PhiPolder: the piezo metric head at the side of the polder.
RToe: the damping factor at the dike toe (optional, default value = 1).
HRiver: the water level of the river.
LeakageLenght: the leakage length.
SurfaceLine: a line of type PipingSurfaceLine (see 2.2.1) defining the contour of
the surface level of the dike including a possible ditch. For more information on
the PipingSurfaceLine class and the PipingPoint class see also the Technical
specifications (Lit. 3).
SoilProfile: a one dimensional profile of type PipingProfile (see 2.2.1) containing
all relevant layers and soil parameters per layer. It also holds the BottomLevel
which defines the overall bottom level of the profile. For more information on the
PipingProfile class and the PipingLayer class see also the Technical
specifications (Lit. 3).
RequiredFactorOfSafety: the required factor of safety for Uplift.
VolumetricWeightOfWater: the volumetric weight of water (optional, default
value = 9.81).
ModelFactorUplift: the model factor for uplift.
IsOvenDryUnitWeight: determines whether the oven dry unit weight should be
used instead of the unit weight above phreatic level.
MinimumThicknessCoverLayer: the minimum thickness of the cover layer.
RExit: the damping factor at the exit point. This is an optional parameter with a
default value of 1.

To be able to validate the input the ValidateO function can be used. This function will
report any errors found in a list of string. If no errors were found, the returned list will be
empty. For this class the next conditions are checked during validation:

SoilProfile is known (not null).
SurfaceLine is known (not null).
SurfaceLine contains minimal 2 points.
All points in the surface line are ordered left to right.
All characteristic points (if any) in the surface line are ordered left to right.
The ditch (when used) is correct (all four ditch points are available and given in
the correct left to right order).
RExit is not O.
(PhiExit - Hexit) is not O.
SoilProfile has at least one layer
The layers within the SoilProfile must be ordered top to bottom and must be at
least 0.001 m apart.

https:/lrepos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunkidoc 8

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

The bottom level of the SoilProfile must be at least 0.001 m is below the
Toplevel of the deepest layer.
SoilProfile has an aquifer.
SoilProfile covers the surfaceline (top level SoilProfile at least as high as the
surface line, bottom level SoilProfile at least as low as the surface line).
SoilProfile covers the top of the aquifer (top level SoilProfile at least as high as
the aquifer's top, bottom level SoilProfile at least as low as aquifer's top).

To start the determination, use the CalculateO function. After this, the property ExitPoint
(type PipingPoint) can be used to obtain the resulting exit point.

2.2.3 Determination of the uplift margin.
To fulfil requirement 1 of the "Requirements and Functional Design", the class
UpliftMarginDeterminator is created as part of the Deltares.WTIPiping assembly.

This class is inherited from the ExitPointDeterminator class and therefore has all the
properties and functions defined for that class. Figure 1 shows the class diagram for
this relation.

ExitPointDeterminator

UpliftMarginDeterminator

Figure 1:Class diagram of the Determinator classes.

The ValidateO function offers exact the same checks as the base class
ExitPointDeterminator.

In addition to the base class this class offers the next properties as result:
PhiCu: an array of doubles containing all critical head values per X-coordinate.
Phi: an array of doubles containing all calculated head values per X-coordinate.
X: an array of doubles containing all X-coordinates.

2.2.4 Determination of the effective height and effective stress at exit point.
To help fullfill requirement 3, is should be possible to determine the effective stress and
effective height. For this the class EffectiveThicknessCalculator is created as part of the
Deltares.WTIPiping assembly. This is in fact a utility class, meant to assist in the
determination of the effective stress and effective height for a given exit point. As this
class is a utility class there is no validation. Furthermore its parameters are not part of
Annex A as the results here are input for other functions.

To be able to determine the values, the next input (properties) is required:
VolumetricWeightOfWater: the volumetric weight of water (optional, default
value = 9.81).
SurfaceLine: see 2.2.1 for description.

https:l!repos.deltares. nI/repos/FailureMechan isms/F ailureMechanisms/DikesPipi ng/tru nkldoc 9

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

SoilProfile: see 2.2.1 for description. Note that if the soil profile holds more than
one aquifer, only the highest aquifer will be taken into account for the
determination of the resulting values.
ExitPointXCoordinate: the (local) x coordinate of the exit point.
PhreaticLevel: the phreatic level at the side of the polder.

To start the determination, use the Calculate() function. After this, the next properties
are available as results:

EfffectiveStress: the calculated effective stress at the top of the aquifer at the
given exit point x coordinate.
EffectiveHeight: the calculated effective height above the aquifer at the given
exit point x coordinate.

2.2.5 Determination of uplift safety.
To fulfil the uplift part of requirement 3 of the "Requirements and Functional Design",
the class WTIUpliftCalculator is created as part of the Deltares.WTIPiping assembly.

To be able to determine the uplift safety, the next input (properties) is required:
VolumetricWeightOfWater: the volumetric weight of water (optional, default
value = 9.81).
ModelFactorUplift: the model factor for uplift.
EffectiveStress: the effective stress.
HRiver: the water level of the river.
PhiExit: the hydraulic head at exit point.
RExit: the damping factor at the exit point. This is an optional parameter with a
default value of 1.
HExit: the phreatic level at exit point.
PhiPolder: the piezo metric head at the side of the polder.

To be able to validate the input the Validate() function can be used. This function will
report any errors found in a list of string. If no errors were found, the returned list will be
empty. For this class the next conditions are checked during validation:

RExit is not O.
(PhiExit - Hexit) is not O.

To start the determination, use the Calculate() function. After this, the next properties
are available as results:

Zu: the limit state value for uplift.
FoSu: the factor of safety for uplift.
DeltaPhiCu: the critical head difference for uplift.
Hcu: the critical water level for uplift.

Note that (PhiExit - Hexit) < 0 will result in a FoSu-value of 99.0. Also note, that when
the EffectiveStress < 0 the kernel will raise an exception of type
WTIUpliftCalculatorException.

2.2.6 Determination of piping safety (without cutloff wails).
To fulfil the piping part of requirement 3 of the "Requirements and Functional Design", a
number of classes are created as part of the Deltares.WTIPiping assembly. As the
three piping models share common parameters and functions and both Sellmeijer
models even more, using base classes and inheritance is appropriate. Figure 2 shows
the class diagram for the piping models.

https:/lrepos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 10

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

PipingBaseCalculator

SellmeijerBaseCalculator

Sellmeijer2011 Calculator SellmeijerOriginalCalculator

Figure 2: Class diagram Piping (without Guttoff walls) models

The class PipingBaseCalculator is the base class for all three piping calculation models
that are to be implemented in accordance with requirement 4 (Sellmeijer - single layer -
revised, Sellmeijer - single layer - original and Bligh). This base class contains all
common parameters and functions as shared by the mentioned piping models.

Its input properties are:
ModelFactorPiping: the model factor for piping.
HRiver: the river level.
HExit: the phreatic level at exit point.
Rc: the reduction factor providing the fraction of the blanket thickness by which
the total head difference is reduced due to the hydraulic resistance in the
vertical exit channels (optional, default value = 0.3).
DTotal: the total thickness of the cover layer.
SeepageLength: the seepage length.

The functions ValidateO and CalculateO are both implemented in the base class.
For this class the next condition is checked during validation:

(HRiver - Hexit - (Rc * D'Totalj) is not O.

The output properties are:
Zp: limit state function value for piping.
FoSp: safety factor for piping.
Hcp: the critical water level for piping.
Hc: the critical head difference for piping.

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 11

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

The SellmeijerBaseCalculator is the base class for both Sellmeijer models. It extends
the PipingBaseCalculator with several additional input properties:

GammaSubParticles: the submerged volumetric weight of the sand particles
(optional, default value = 16.5).
WhitesDragCoefficient the whites drag coefficient (optional, default value =
0.25).
D70: 70% fractile of the aquifer's grain size distribution.
VolumetricWeightOfWater: volumetric weight of water (optional, default value =
9.81).
DarcyPermeability: the permeability (Darcy).
KinematicViscosityWater: the kinematic viscosity of water (optional, default
value = 1.33 e-6).
Gravity: the gravitational constant (optional, default value = 9.81).
DAquifer: the thickness of the aquifer.

The ValidateO function offers the next additional checks to base class:
VolumetricWeightOfWater is not O.
Seepage Length is greater than O.
DAquifer is greater than O.

Piping safety using Sellmeijer - single layer - revised
To fulfil the piping part of requirement 3 and requirement 4a of the "Requirements and
Functional Design", the class Sellmeijer2011 Calculator is created as part of the
Deltares.WTIPiping assembly.

The Sellmeijer2011Caicuiator is inherited from the base class SellmeijerBaseCalculator
and extends this with additional input properties:

D70Mean: the reference value for Sellmeijer of the 70% fractile of the aquifer's
grain size distribution (optional, default value = 2.08 e-4).
BeddingAngle: the bedding angle for the Sellmeijer revised model (optional,
default value = 37).

The ValidateO function offers the next additional checks to base class:
BeddingAngle is at least O.

Piping safety using Sellmeijer - single layer - original
To fulfil the piping part of requirement 3 and requirement 4b of the "Requirements and
Functional Design", the class SellmeijerOriginalCalculator is created as part of the
Deltares.WTIPiping assembly.

The SellmeijerOriginalCalculator is inherited from the base class
SellmeijerBaseCalculator and extends this with one additional input property:

BeddingAngle: the bedding angle for the Sellmeijer original model (optional,
default value = 41).

The ValidateO function offers the next additional checks to base class:
BeddingAngle is at least O.
WhitesDragCoefficient is greater than O.

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 12

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

Piping safety using Bligh
To fulfil the piping part of requirement 3 and requirement 4c of the "Requirements and
Functional Design", the class BlighCalculator is created as part of the
Deltares.WTIPiping assembly.

The BlighCalculator is inherited from the base class PipingBaseCalculator and only
extends this with one additional input property:

D50: the median diameter of the aquifer's grain size distribution.

2.2.7 Determination of the piping safety (with cuttoff walls) using Lane.
To fulfil requirement 5 of the "Requirements and Functional Design", the class
LaneCalculator is created as part of the Deltares.WTIPiping assembly.

To be able to determine the piping safety using Lane, the next input (properties) is
required:

LHorizontal: the horizontal seepage length.
LVertical: the vertical seepage length.
HRiver: the water level of the river.
HExit: the phreatic level at exit point.
D50: the median diameter of the aquifer's grain size distribution.

To be able to validate the input the ValidateO function can be used. This function will
report any errors found in a list of string. If no errors were found, the returned list will be
empty. For this class the next condition is checked during validation:

(HRiver - Hexit) is not O.

To start the determination, use the CalculateO function. After this, the next properties
are available as results:

ZLane: the limit state value for Lane.
FoSLane: the factor of safety for Lane.
HcLane: the critical water level for Lane.

2.2.8 Determination of heave safety (without cuttoff walls).
To fulfil the heave part of requirement 3 and requirement 6 of the "Requirements and
Functional Design", the class HeaveCalculator is created as part of the
Deltares.WTIPiping assembly.

To be able to determine the heave safety, the next input (properties) is required:
Ich: the critical heave gradient.
DTotal: the total thickness of the cover layer.
PhiExit: the hydraulic head at exit point.
RExit: the damping factor at the exit point. This is an optional parameter with a
default value of 1.
HExit: the phreatic level at exit point.
PhiPolder: the piezo metric head at the side of the polder.

To be able to validate the input the ValidateO function can be used. This function will
report any errors found in a list of string. If no errors were found, the returned list will be
empty. For this class the next condition is checked during validation:

DTotal is not O.
RExit is not O.
(PhiExit - Hexit) is not O.

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 13

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

To start the determination, use the CalculateO function. After this, the next properties
are available as results:

Zh: the limit state value for heave.
FoSh: the factor of safety for heave.
Hch: the critical water level for heave.

Note that (PhiExit - Hexit) < 0 will result in a FoSh-value of 99.0.

2.2.9 Determination of heave safety (with cuttoff walls).
To fulfil the heave part of requirement 3 of the "Requirements and Functional Design",
the class HeaveCuttOffCalculator is created as part of the Deltares.WTIPiping
assembly.

This class is inherited from the HeaveCalculator class and therefore has all the
properties and functions defined for that class. Figure 3 shows the class diagram for
this relation.

HeaveCalculator

HeaveCuttOffCalculator

Figure 3: Class diagram of the Heave classes.

In addition to the base class this class requires one extra property as input:
Gradient: the exit gradient.

The ValidateO function is redefined instead of inherited and checks:
RExit is not O.
Gradient is not O.

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 14

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

3 Literature

1. WTI guidelines for software development incl. audit checklist
https://repos.deltares.nl/repos/Ringtoets/trunk/doc/Guidelines, templates and
checklistslWTl guidelines for software development incl audit checklist.doc

2. RTO design.doc
https://repos.deltares. nl/repos/Ringtoets/tru nk/doc/system/RTO design .doc

3. Technical specifications
https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPip
ing/trunk/doc/DoxyGen/API Docs/latex/Piping Kernel - Technical
Documentation.pdf

https://repos.deltares. nI/repos/F ai IureMeehan isms/F ai IureMeeha nisms/DikesPipi ng/tru nkldoe 15

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

A Full description of parameters

The next table shows the full description of all input parameters.

... - - I~ I -1>!:e!.llm.Ja] M l1ll"~ .J(:Ie!!.:j[.... I~ • ~... ~ ~. - .IUll:1r . -
l-!ft'lli't::.K.I lif. -~-

HRiver Water level [ml Real number, 0.000 None -1 * Max
of the river reference Max Double

level Double
HExit Phreatic r [ml Real number, 0.000 None -1 * Max

level at exit reference Max Double
point level Double

PhiPolder Piezo metric [ml Real number, None -1 * Max
head at the 0.000 Max Double
side of the Double
polder

PhiExit Piezo metric [ml Real number, None -1 * Max
head at exit 0.000 Max Double
point Double

RToe Damping [-l Real number, 0.000 1 0 1
factor at
dike toe

RExit Damping [-l Real number, 0.000 1 0 1
factor at exit
point

LeakageLength Leakage [ml Real number, 0.000 None 0 Max
length Double

VolumetricWeightOfWater Volumetric [kN/m1 Real number, 0.000 9.81 -1 * Max
weight of Max Double
water Double

DAquifer Thickness of [ml Real number, 0.000 None >0 Max
the aquifer Double

RequiredFactorOfSafety Required [-l Real number, 0.000 None -1 * Max
factor of Max Double
safety for Double
uplift

ModelFactorUplift Model factor [-l Real number, 0.000 None -1 * Max
for uplift Max Double

Double
IsOvenDryUnitWeight Use oven [-l Boolean None Inapp. Inapp.

dry unit
weight
instead of
unit weight
above
phreatic
level?

MinimumThicknesCoverLayer Minimum [ml Real number, 0.000 None -1 * Max
thickness of Max Double
the cover Double
layer

EffectiveStress Effective [kN/m1 Real number, 0.000 None -1 * Max
stress Max Double

Double

https://repos.deltares.nl/repos/FailureMechanisms/FaiIureMechanisms/DikesPiping/trunkldoc 16

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

ModelFactorPiping Model factor [-] Real number, 0.000 None -1 * Max
for piping Max Double

Double
Rc Reduction [-] Real number, 0.000 0.3 -1 * Max

factor Max Double
blanket Double
thickness

DTotal Total [m] Real number, 0.000 None -1 * Max
thickness of Max Double
cover layer Double

SeepageLength Seepage [m] Real number, 0.000 None >0 Max
length Double

GammaSubParticies Submerged [kN/m1 Real number, 0.000 16.5 -1 * Max
volumetric Max Double
weight of Double
sand
particles

WhitesDragCoefficient Whites drag [-] Real number, 0.000 0.25 >0 Max
coefficient Double

D70 70% fractile [m] Real number, 0.000 None -1 * Max
of the Max Double
aquifers Double
grain size
distribution

DarcyPermeability Permeability [mts] Real number, 0.000 None -1 * Max
(Darcy) Max Double

Double
KinematicViscosityWater Kinematic [m2/s] Real number, 0.000 1.33E- -1 * Max

viscosity of 6 Max Double
water Double

Gravity Gravitational [m/s2] Real number, 0.000 9.81 -1 * Max
constant Max Double

Double
D70Mean Reference [m] Real number, 0.000 2.0BE- -1 * Max

value for 4 Max Double
Sellemeijer Double

BeddingAngle (revised) Bedding n Real number, 0.000 37 0 Max
angle for the Double
Sellemijer
revised
model

BeddingAngle (Original) Bedding [0] Real number, 0.000 41 0 Max
angle for the Double
Sellmeijer
original
model

D50 Median [m] Real number, 0.000 None -1 * Max
diameter of Max Double
the aquifer's Double
grain size
distribution

LHorizontal Horizontal [m] Real number, 0.000 None -1 * Max
seepage Max Double
length Double

LVertical Vertical [m] Real number, 0.000 None -1 * Max
seepage Max Double
length Double

Ich Critical [-] Real number, 0.000 None -1 * Max

https:llrepos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunkldoc 17

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

heave Max Double
gradient Double

SurfaceLine Line of Inapp. PipingSurfaceLine None Inapp. Inapp.
points
defining the
surface
level, see
2.2.1

PipingSurfaceLine.Name Name of the Inapp. String None Inapp. Inapp.
surface line

PipingSurfaceLine.Points Points Inapp. List<PipingPoint> None Inapp. Inapp.
defining the
surface line

PipingPoint Point with all Inapp. PipingPoint None Inapp. Inapp.
relevant
properties

PipingPoint.X x-coordinate [m] Real number, 0.000 None -1 * Max
Max Double
Double

PipingPoint.Y y-coordinate [m] Real number, 0.000 None -1 * Max
Max Double
Double

PipingPoint.Z z-coordinate [m] Real number, 0.000 None -1 * Max
Max Double
Double

PipingPoints.Type Type Inapp. PipingCharacteristic None
PointType

SoilProfile 1D profile Inapp. PipingProfile None Inapp. Inapp.
defining the
layers and
their
parameters,
see 2.2.1

SoilProfile.Name Name of the Inapp. String None Inapp. Inapp.
profile

SoilProfile.BottomLevel Bottom level [m] Real number, 0.000 None -1 * Max
reference Max Double
level Double

SoilProfile.Layers Layers Inapp. List<PipingLayer> None Inapp. Inapp.
defining the
profile

PipingLayer Layer with Inapp. PipingLayer None Inapp. Inapp.
all relevant
properties

PipingLayer.Name Name of the Inapp. String None Inapp. Inapp.
surface line

PipingLayer.TopLevel Top level of [m] Real number, 0.000 None -1 * Max
the layer reference Max Double

level Double
PipingLayer.AbovePhreaticLevel Unit weight [kN/m1 Real number, 0.000 None -1 * Max

above Max Double
phreatic Double
level

PipingLayer.BelowPhreaticLevel Unit weight [kN/m1 Real number, 0.000 None -1 * Max
below Max Double
phreatic Double
level

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 18

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

PipingLayer.DryUnitWeight (Oven) Dry [kN/m1 Real number, 0.000 None -1 * Max
Unit weight Max Double

Double
PipingLayer.lsAquifer Aquifer Inapp. Boolean False lnepp. lnepp.

indicator

The next table shows the full description of all output parameters.

... .. I -;;'4:"~I.Hr'lll ~ ~. ~ .. .1 ó'lF.1l1i' [liIIiJ b,..
Œ1lmI. - • - .Œl~

"'" ,./10. • • .~- -..-

ExitPoint Exit Point (as lnepp. GeometryPoint None lnepp. lnepp.
GeometryPoint)

PhiCu Critical head [m] Array of Real None tneoo. lnepp.
values per X numbers
coordinate

Phi Calculated head [m] Array of Real None ineoo. lnepp.
values per X numbers
coordinate

X X coordinates [m] Array of Real None tnepo. lnepp.
numbers

Zu Limit state value [ol Real number None tnspo. lnept).
for uplift

FoSu Factor of safety for [ol Real number None lnept: tnepo.
uplift

DeltaPhiCu Critical head [m] Real number None inepc, lnept».
difference for uplift

Hcu Critical water level [m] Real number None inepp. lnepp.
for uplift reference

level
Zp Limit state value [ol Real number None lnept). tnepp.

for piping
FoSp Factor of safety for [ol Real number None 'napp. lnepp.

piping
Hcp Critical water level [m] Real number None lnept». tnepp.

for piping reference
level

Hc Critical head [m] Real number None tnepo. tnepp.
difference for
piping

ZLane Limit state value [ol Real number None lnepp. lnepp.
for Lane

FoSLane Factor of safety for [ol Real number None tnepp. lnspp.
Lane

HcLane Critical water level [m] Real number None lneoo. tnepo.
for Lane reference

level
Zh Limit state value [ol Real number None tnepo. lnepp.

for Heave
FoSh Factor of safety for [ol Real number None lnepp. tnepo.

Heave
Hch Critical water level [m] Real number None tneoo. lnepp.

for Heave reference
level

https:/lrepos.deltares.nI/repos/FailureMechanisms/FailureMechanisms/DikesPipingltru nkldoc 19

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

B Examples of implementation

In this annex an example of the implementation is provided for each of the required
functions. These examples show (in C#) what type of object are to be created, how to
set their properties, how to start the calculation and how to obtain the results.

B.1 Determination of the exit point

First the surface line has to be created and filled. This can be done in a function like:

public PipingSurfaceLine CreateSurfaceLineForExitPointTest()
{

II create a surface line
PipingSurfaceLine surfaceLine new PipingSurfaceLine { Name
"ExitPointLine"};
II add a point as dike toe
surfaceLine.Points.Add(new PipingPoint(10.0, 0, 0,
pipingCharacteristicPointType.DikeToeAtRiver));

II add point as top of ditch at dike side
surfaceLine.Points.Add(new PipingPoint(58.5, 0, 0,
PipingCharacteristicPointType.DitchDikeSide));

II add point as bottom of ditch at dike side
surfaceLine.Points.Add(new PipingPoint(59.5, 0, -2,
PipingCharacteristicPointType.BottomDitchDikeSide));

II add point as bottom of ditch at polder side
surfaceLine.Points.Add(new PipingPoint(61.5, 0, -2,
PipingCharacteristicPointType.BottomDitchPolderSide));

II add point as top of ditch at polder side
surfaceLine.Points.Add(new PipingPoint(61.5, 0, 0,
PipingCharacteristicPointType.DitchPolderSide));

II add non typed point
surfaceLine.Points.Add(new PipingPoint(70.0, 0, -0.2));

II add point as end point of the surface line
surfaceLine.Points.Add(new PipingPoint(75.0, 0, 0,
PipingCharacteristicPointType.SurfaceLevellnside));

II give the now filled surface line as result
return surfaceLine;

}

Next the soil profile, together with its layers and their parameters, has to be created
and filled. This can be done in a function like:

public static PipingProfile CreateSimpleTestProfile()
{

II create the profile, make sure to set the Bottomlevel!
var soilProfile = new PipingProfile
{

Name = "TestProf",
Bottomlevel = -30

https:l/repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc 20

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

};
II create a layer, set the paramters and add it to the profile
var layerl = new PipingLayer
{

Name = "layerl - klei",
AbovePhreaticLevel 18,
BelowPhreaticLevel = 2e,
Top Level = le,
IsAquifer = false

};
soiIProfile.Layers.Add(layerl);
II create another layer, set the paramters and add it to the profile
var layer2 = new PipingLayer
{

Name = "layer2 - zand",
AbovePhreaticLevel 15,
BelowPhreaticLevel = 17,
Toplevel = -3,
IsAquifer = true

};
soiIProfile.Layers.Add(layer2);

II give the now filled soil profile as result
return soilProfile;

}

Now create and fill the determinator object:

public ExitPointDeterminator FiIISimpleExitPointDeterminator()
{

II create the detrminator and set all required properties
var epCalc = new ExitPointDeterminator();
epCalc.SoilProfile = CreateSimpleTestProfile();
epCalc.SurfaceLine = CreateSurfaceLineForExitPointTest();
epCalc.PhiPolder = e;
epCalc.HRiver = 4;
epCalc.lsUseOvenDryUnitWeight = false;
epCalc.LeakageLength = e;
epCalc.MinimumThicknessCoverLayer = e;
epCalc.ModelFactoruplift = 1;
epCalc.RExit = 1;
epCalc.RToe = 1;
epCalc.RequiredFactorOfSafety = 1;
epCalc.VolumetricWeightOfWater = le;
epCalc.LeakageLength = 30;
return epCalc;

}

https:llrepos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunkldoc 21

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

Use the determinator to validate the data:

public void ExampleValidate()
{

II create and fill the determinator
var epCalc = FiIISimpleExitPointDeterminator();

II start the validation
var errors = epCalc.Validate();
II check the errors, the count tells how much there are (0 if none)
booI valid = true;
if (errors.Count > 0)
{

valid = false;
string firstError errors[0];

}
}

The ValidateO example above is in fact a generic example of how to implement this
method for all the required functions (use the object.ValidateO to get a list of errors).

Use the determinator to get results:

public void ExampleCalculate()
{

II create and fill the determinator
var epCalc = FiIISimpleExitPointDeterminator();

II start the calculation
epCalc.Calculate();
II retrieve the result
var myExitPoint = epCalc.ExitPoint;
II check to see if it is null (it is null when no uplift occurs and
II no point can be found. If available then the coordinates of the
II exit point can be retrieved.
if (myExitPoints != null)
{

var myX
var myZ

epCalc.ExitPoint.X;
epCalc.ExitPoint.Z;

}
}

B.2 Determination of the uplift margin

Create and fill the determinator object (using the surface line and soilprofile as the
example for the exit point):

public UpliftMarginDeterminator FiIISimpleUpliftMarginDeterminator()
{

var umdCalc = new UpliftMarginDeterminator();
umdCalc.SoilProfile = CreateSimpleTestProfile();
umdCalc.SurfaceLine = CreateSurfaceLineForExitPointTest();
umdCalc.PhiPolder = 0;
umdCalc.HRiver = 4;
umdCalc.IsUseOvenDryUnitWeight = false;
umdCalc.LeakageLength = 0;
umdCalc.MinimumThicknessCoverLayer = 0;

https://repos.deltares.nI/repos/FaiIureMeehanisms/FaiIureMeehanisms/DikesPiping/trunk/doe 22

1NT12017Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

umdCalc.ModelFactorUplift 1;
umdCalc.RExit = 1;
umdCalc.RToe = 1;
umdCalc.RequiredFactorOfSafety = 1;
umdCalc.VolumetricWeightOfwater = le;

II Make leekage lenght very long so PhiAtX returns PhiToe (or near that).
umdCalc.LeakageLength = 3eeeeee;
return umdCalc;

}

Use the determinator to get results:

public void ExampleCalculate()
{

const double CDiff = e.ee1;
var umdCalc = FillSimpleUpliftMarginDeterminator();

umdCalc.Calculate();
Assert.AreEqual(5e.5, umdCalc.X[e], CDiff);
Assert.AreEqual(4.e, umdCalc.Phi[e], CDiff);
Assert.AreEqual(3.e, umdCalc.PhiCu[e], CDiff);
Assert.AreEqual(6e.5, umdCalc.X[2e], CDiff);
Assert.AreEqual(4.e, umdCalc.Phi[2e], CDiff);
Assert.AreEqual(l.e, umdCalc.PhiCu[2e], CDiff);
Assert.AreEqual(75, umdCalc.X[49], CDiff);
Assert.AreEqual(4.e, umdCalc.Phi[49], CDiff);
Assert.AreEqual(3.e, umdCalc.PhiCu[49], CDiff);

}

B.3 Determination of effective height and effective stress at exit point

public void ExampleCalculate()
{

var effectiveThicknessCalculator new
EffectiveThicknessCalculator

{
SurfaceLine = CreateSurfaceLineForExitPointTest(),
SoilProfile = CreateSimpleTestProfile(),
PhreaticLevel = -1,
VolumicWeightOfWater = le

};
II Set the top of the aquifer to the top of the second layer (-3)
effectiveThicknessCalculator.ExitPointXCoordinate = 56; II left of
II the ditch
effectiveThicknessCalculator.Calculate();
II Top of bottom aquifer is -3
II Surfacelevel = e
II Outside ditch, so effective height surfacelevel -
II top_bottom_aquifer = 1e.e
Assert.AreEqual(le.e,

effectiveThicknessCalculator.EffectiveHeight, e.ee1);

}

B.4 Determination of the uplift safety

public void ExampleUplift()
{

II create and fill the calculator

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunk/doc23

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

var upliftCaleulator = new WTIUpliftCaleulator();
upliftCaleulator.VolumetrieWeightOfWater = 10;
upliftCaleulator.ModelFaetorUplift = 1.0;
upliftCaleulator.EffeetiveStress = 45;
upliftCaleulator.RExit = 0.8;
upliftCaleulator.HRiver = 3.0;
upliftCaleulator.HExit = 0.6;
upliftCaleulator.PhiPolder = 0.5;

II loeal use of a speeial funetion to get a good value for PhiExit
upliftCaleulator.PhiExit =

PiezoHeadCaleulator.CaleulatePhiExit(upliftCaleulator.PhiPolder,
upliftCaleulator.RExit, upliftCaleulator.HRiver);

upliftCaleulator.Caleulate();
II PhiExit = PhiPolder + RExit * (HRiver - PhiPolder) = 0.5 + 0.8

* (3.0 - 0.5) = 2.5
II DelptaPhiCu = EffeetiveStress I VolumetrieWeightOfWater = 45 I

10 = 4.5
Assert.AreEqual(4.5, upliftCaleulator.DeltaPhiCu, 0.0001);
II ZU = ModelFaetorUplift * DelptaPhiCu - (PhiExit - HExit) 1.0

* 4.5 - (2.5 - 0.6) = 2.6
Assert.AreEqual(2.6, upliftCaleulator.Zu, 0.0001);
II FosU = ModelFaetorUplift * DelptaPhiCu I (PhiExit - HExit)

1.0 * 4.5 I (2.5 - 0.6) = 2.6
Assert.AreEqual(2.368421, upliftCaleulator.FoSu, 0.0001);
II Heu = (DelptaPhiCu + HExit - PhiPolder) I RExit + PhiPolder

(4.5 + 0.6 - 0.5) I 0.8 + 0.5
Assert.AreEqual(6.25, upliftCaleulator.Heu, 0.0001);

}

B.5 Determination of the piping safety using Sellmeijer revised

First, set up the calculator:

publie Sellmeijer2011Caleulator SetUpSellmeijerRevisedCaleulator()
{

var se = new Sellmeijer2011Caleulator();
se.WhitesDragCoeffieient = 2.0;
se.BeddingAngle = 45;
se.GammaSubPartieles = 4000;
se.VolumetrieWeightOfWater 1000;
se.D70 = 2.0;
se.SeepageLength = 30.0;
se.DareyPermeability = 0.0001;
se.DAquifer = 3.0;
return se;

}

Then use it to get results:

publie void ExampleCaleulate()
{

var se = SetUpSellmeijerRevisedCaleulator();
se.HRiver = 1;
se.Caleulate();
double expeetedResult = 139.33425195 * 30;
Assert.AreEqual(expeetedResult, se.He, 0.0001);
Assert.AreEqual(-l, se.Zp, 0.0001);
Assert.AreEqual(0, se.FoSp, 0.0001);

https://repos.deltares. nI/repos/F ai lu reMechan isms/F ai IureMecha nisms/DikesPipi ng/tru nk/doc 24

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

Assert.AreEqual(0, se.Hep, 0.0001);
}

B.6 Determination of the piping safety using Sellmeijer original

publie void ExampleCaleulate()
{

var se = new SellmeijerOriginalCaleulator();
se.ModelFaetorPiping = 0.996815279;
se.WhitesDragCoeffieient = 0.298511157;
se.BeddingAngle = 42.8957293359575;
se.GammaSubPartieles = 17;
se.VolumetrieWeightOfWater = 10;
se.D70 = 0.000224485988029883;
se.SeepageLength = 92.10573174;
se.DareyPermeability = 0.000297428;
se.DAquifer = 15.32373435;
se.DTotal = 8.001735065;
se.KinematieViseosityWater 0.00000133;

se.HRiver = 3.123489063;
se.HExit = 1.5;
se.Caleulate();
II Result of Zp with default value for Re = 0.3
II Zp mp * He - (hriver - hexit - re * d)
II = 1.1 * se.He - (3.123489063 - 1.5 - 0.3 * 8.001735065)
II = 1.1 * se.He - 1.383489;
double expeetedResult = se.ModelFaetorPiping * se.He - (-

0.777031457);
double aetualResult = se.Zp;
double expeetedHe = 10.374078197166554;
Assert.AreEqual(expeetedHe, se.He, 0.001);
Assert.AreEqual(expeetedResult, aetualResult, 0.001);

II Result of Zp for Re = 0.5
II Zp mp * He - (hriver - hexit - re * d)
II 1.1 * se.He - (3.123489063 - 1.5 - 0.5 * 8.001735065)
II 1.1 * se.He - -2.37737847;
sc.Re 0.5;
se.Caleulate();
expeetedResult = se.ModelFaetorPiping * se.He - -2.37737847;
aetualResult = se.Zp;
Assert.AreEqual(expeetedResult, aetualResult, 0.001);

}

B.7 Determination of the piping safety using Bligh

publie void ExampleCaleulate()
{

eonst double diff = 0.0001;
var be = new BlighCaleulator();
be.HRiver = 1;
be.Caleulate();
Assert.AreEqual(-l, be.Zp);
Assert.AreEqual(0, be.FoSp);
Assert.AreEqual(0, be.Hep);
Assert.AreEqual(0, be.He);

https://repos.deltares. nI/repos/F aiIureMechanisms/F ailureMechanisms/DikesPiping/tru nk/doc 25

WTI2017 Failure Mechanisms - Piping Kemel Technical Design Version 1.2, 24 July 2015

be.HRiver = 7;
be.ModelFaetorPiping 0.5;
be .HExit = 2;
be.Re = 0.8;
be.DTotal = 3;
be.SeepageLength 18;
be.D50 = 2.5e-3;
be.Caleulate();
Assert.AreEqual(-1.6) be.Zp) diff);
Assert.AreEqual(1/2.6) be.FoSp) diff);
Assert.AreEqual(5.4) be.Hep) diff);
Assert.AreEqual(2) be.He) diff);

}

B.8 Determination of the piping safety using Lane

public void ExampleCaleulate()
{

eonst double diff = 0.0001;
var laneCaleulator = new LaneCaleulator();
laneCaleulator.HRiver = 1;
laneCaleulator.Caleulate();
Assert.AreEqual(0) laneCaleulator.FoSLane) diff);
Assert.AreEqual(-l) laneCaleulator.ZLane) diff);
Assert.AreEqual(0) laneCaleulator.HeLane) diff);

laneCaleulator.HRiver = 7;
laneCaleulator.LHorizontal = 60;
laneCaleulator.LVertieal = 10;
laneCaleulator.HExit = 2;
laneCaleulator.D50 = 2.5e-4;
laneCaleulator.Caleulate();
Assert.AreEqual(l) laneCaleulator.FoSLane) diff);
Assert.AreEqual(0) laneCaleulator.ZLane) diff);
Assert.AreEqual(7) laneCaleulator.HeLane) diff);

}

B.9 Determination of the heave safety (without cuttoff walls)

public void ExampleCaleulate()
{

var he = new HeaveCaleulator();
he. PhiExit = 1;
he. RExi t = 1;
he.DTotal = 1;
he.Caleulate();
Assert.AreEqual(-l) he.Zh);
Assert.AreEqual(0) he.FoSh);
Assert.AreEqual(0) he.Heh);
he.PhiExit = 3;
he. RExit = 0.5;
he.DTotal = 2;
he.HExit = -1;
he.Ieh = 2;
he.Phipolder = -1;
he.Caleulate();
Assert.AreEqual(0) he.Zh);
Assert.AreEqual(l) he.FoSh);

https:l/repos.deltares.nl/repos/FailureMeehanisms/FailureMeehanisms/DikesPiping/trunk/doe 26

WTI2017 Failure Mechanisms - Piping Kernel Technical Design Version 1.2, 24 July 2015

Assert.AreEqual(7, he.Heh);
}

B.10 Determ ination of the heave safety (with cuttoff walls)

public void ExampleCaleulate()
{

var he = new HeaveCutoffCaleulator();
he.Gradient = 1;
he.RExit = 1;
he.DTotal = 1;
he.Caleulate();
Assert.AreEqual(-l, he.Zh);
Assert.AreEqual(0, he.FoSh);
Assert.AreEqual(0, he.Heh);
he.Gradient = 4;
he.RExit = 0.5;
he.DTotal = 2;
he.HExit = -1;
he.Ieh = 2;
he.PhiPolder = -1;
he.CaleulateO;
Assert.AreEqual(-2, he.Zh);
Assert.AreEqual(0.5, he.FoSh);
Assert.AreEqual(7, he.Heh);

}

https://repos.deltares.nl/repos/FailureMechanisms/FailureMechanisms/DikesPiping/trunkldoc 27

