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1 Summary 
This memo is intended for Deltares and Rijkswaterstaat personnel involved in the SWAN 
North Sea model schematization and operational forecasting systems (RWsOS). It details the 
training, testing and validation of a Machine Learning (ML) model for SWAN-Kuststrook (KS) 
in front of the Eastern Scheldt barrier (seaside), as part of the MAD 09 2024 Hydraulica 
Schematisaties project, within the SWAN North Sea sub-project. 
 
The ML model aims to improve the accuracy of operational wave forecasts at the 
Oosterschelde 04 (OS4) measurement location by correcting the spectral output of the 
SWAN-KS model. This improvement will support the ongoing maintenance of the Eastern 
Scheldt barrier. Unlike previous studies, which did not include OS4, this effort focused on 
developing a dedicated model specifically for the OS4 location. The key steps involved in this 
work were to obtain data from: the SWAN-KS model (water level, spectral, and integral wave 
parameters for OS4), the KNMI Harmonie model (wind direction and wind speed for the Vlakte 
van de Raan location), and observational data for OS4. Followed by data quality control, 
training of the ML model, and analysis of the results. 
 
The study demonstrated improved wave spectrum predictions and greater accuracy in integral 
parameters after applying the ML model corrections, similar to the results of previously trained 
models (see details in Den Bieman et al., 2023). These findings support integrating this 
approach into the FEWS operational system for the OS4 location. 

2 Machine learning model 
This section presents a brief description of the methodology followed during this study. An in-
depth explanation can be found in Den Bieman et al. (2023).  
 
In this study, we applied a machine learning model, more specifically a gradient boosting 
decision tree model (GBDT) called XGBoost, already implemented in Python. A GBDT model 
make use of multiple decision trees to create a strong predictive model.  
 
The ML model was trained using predictions from the SWAN-KS model, combined with wind 
input from the HARMONIE model and wave measurement data (see Table 2.1 for details on 
the various sources and availability). The wave measurement data served as the basis for 
calculating the target variable, which represents the correction required to match SWAN's 
output with observed wave measurements. These corrections were calculated for each bin of 
the frequency spectrum, specifically focusing on energy density, based on the available 
observational data. 
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Table 2.1 Overview of input data for the training, validation and testing of the ML model 
Variables Location Source (RWS Matroos) Period data availability 

Wind speed used in SWAN Vlakte van de Raan KNMI HARMONIE 
model (1) 

04/10/2020 – 30/04/2024  

Wind direction used in SWAN Vlakte van de Raan KNMI HARMONIE 
model (1) 

04/10/2020 – 30/04/2024  

Water level used in SWAN OS4 SWAN-KS (1) 04/10/2020 – 25/11/2022 

Spectral wave height predicted by 
SWAN 

OS4 SWAN-KS (1) 04/10/2020 – 13/09/2023  

Spectral wave period predicted by 
SWAN 

OS4 SWAN-KS (1) 04/10/2020 – 13/09/2023  

Wave direction predicted by SWAN OS4 SWAN-KS (1) 04/10/2020 – 13/09/2023  

Energy density wave spectra OS4 Observations (2) 01/01/2019 – 01/04/2024  

(1) From RWS-Matroos 

(2) From Jan-Rolf Hendriks, RWS  

 
For the XGBoost method, the previously optimized model parameters included a maximum 
tree depth of 25, a minimum of 50 data points per leaf, and a learning rate of 0.05. These 
parameters were based on the findings of Den Bieman et al. (2023).  
 
The root-mean-squared error (RMSE) is used both as the objective function in the ML model 
training and to evaluate the performance of the SWAN-KS model and corrected SWAN-KS 
results (SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐).  
 
The total dataset used in the study was randomly split into three subsets: training, validation, 
and test datasets. The model was trained on the training set, during which the validation 
dataset is used in the early stopping algorithm. Early stopping helps to determine the number 
of decision trees to be used in the model. The algorithm stops adding trees when there is no 
longer an improvement in the model’s performance on the validation dataset. Ultimately, once 
training is complete, the model is evaluated on the unseen test dataset to assess its 
generalization capabilities. The results of this evaluation are presented in the subsequent 
section. 
 
The total dataset covers the period from 04/10/2020 to 25/11/2022, a total of 25 months. The 
timeframe was chosen based on data availability, with water level data being the limiting 
variable (see Table 2.1). Figure 2.1 presents a visualization of the total dataset for the OS4 
location through density scatter plots of wave height, wave period, wave direction, wind 
speed, and wind direction. These scatter plots illustrate the range of hydrodynamic conditions 
present in the dataset. In this case, the dataset predominantly includes mild conditions, with 
wave heights (𝐻𝐻𝑚𝑚0) of less than 2 meters. 
 
 
 

Joana van Nieuwkoop
Maybe add a column with location to it, as it is OS4 or VR



 
Date 
27 November 2024 

Our reference 
11210334-005-ZKS-0005 

 Page 
3 of 6 

 

 
 

 

  
 

 
Figure 2.1. SWAN wave data and HARMONIE wind information for the OS4 location used during the ML 

model training. The upper left panel shows the density scatter of the wave height and the wind 
speed. The upper right panel shows the density scatter of the wave height and the wind 
direction. The lower left panel shows the density scatter of the wave height and the spectral 
wave period. The lower right panel shows the density scatter of the wave height and the wave 
direction.  

3 Results 
In this section, we evaluate the performance of the trained ML model on the test dataset. We 
initially assess how well the model predicts the wave energy density. Subsequently, we 
evaluate the model's accuracy in predicting spectral wave parameters. To do so, the ML 
model's predictions are used to correct the initial SWAN spectrum, resulting in a corrected 
spectrum. This corrected spectrum is then translated into corresponding spectral parameters. 
 
Figure 3.1 displays the root-mean-square error (RMSE) per frequency bin. This figure clearly 
shows that the RMSE reduction is more pronounced in the middle frequencies, with the most 
significant improvement occurring between 0.1 and 0.5 Hz. 
 
Additionally, SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐's performance was assessed based on the integral spectral wave 
parameters, including spectral wave heights (𝐻𝐻𝑚𝑚0 and 𝐻𝐻𝑚𝑚,LF) and spectral wave periods (𝑇𝑇𝑚𝑚-1,0 

and 𝑇𝑇𝑚𝑚02). Figure 3.2 shows a comparison between the spectral parameters predicted by both 
SWAN and SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and the observed values from wave measurements for the test dataset. 
The figure reveals that SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 reduces data scatter, as reflected in the decrease of RMSE 
across all spectral parameters. For instance, the RMSE reduced from 0.10 m to 0.07 m for 
𝐻𝐻𝑚𝑚0 and from 0.92 s to 0.40 s for 𝑇𝑇𝑚𝑚-1,0 The most substantial improvement is seen in the 
spectral periods, where the overprediction by SWAN is corrected by the ML model.  
 
Detailed analysis of the wave spectra and the improvement per frequency bin highlights that 
the largest effect comes from the redistribution of energy, addressing SWAN’s shortcomings, 
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particularly in the upper and lower frequencies (see examples in Figure 3.3). Notably, for this 
specific dataset, the error in wave heights was already low (RMSE < 0.10 m). 
 
When compared to previously trained models (Den Bieman et al., 2023), similar RMSE 
reductions were observed. Across the 14 locations, RMSE decreased from 0.21 m to 0.14 m 
for 𝐻𝐻𝑚𝑚0 and from 0.67 s to 0.41 s for 𝑇𝑇𝑚𝑚-1,0. Specifically, in the Western Scheldt region—where 
the Cadzand and Deurlo locations are somewhere near the OS4 position—RMSE reductions 
were from 0.15 m to 0.12 m for 𝐻𝐻𝑚𝑚0 and from 0.83 s to 0.43 s for 𝑇𝑇𝑚𝑚-1,0. Additionally, the 
operational SWAN-KS model performed well in estimating spectral wave heights at these 
Western Scheldt locations, with RMSE remaining below 0.15 m. 
 

 
Figure 3.1. Overview of the RMSE per frequency bin for the test dataset. In blue the error associated with the 

SWAN-KS model and in red the error associated with the SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 model  
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Figure 3.2. Spectral wave parameters and the respective RMSE for the test dataset as predicted by SWAN-KS 

(blue) and SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (red) 
 

 
Figure 3.3. Energy density spectra for two moments in time, showing observed (black), SWAN (blue) and 

SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (red) predictions. These spectra illustrate the corrections at both lower and higher 
frequency range. 

4 Conclusions and recommendations 
The SWAN model, enhanced with XGBoost correction (SWAN𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), shows significant 
improvements over the operational SWAN model. There is a reduction in the RMSE per 
frequency bin and an improvement in the estimation of the spectral wave parameters, with a 
30%, 33%, 57% and 70% decrease in RMSE for 𝐻𝐻𝑚𝑚0 and 𝐻𝐻𝑚𝑚,LF, 𝑇𝑇𝑚𝑚−1,0 and 𝑇𝑇𝑚𝑚0,2  respectively. 
These results demonstrate that the SWANcorr model represents a significant improvement over 
the existing operational wave model, particularly in spectral wave periods, while the 
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operational SWAN-KS model already performed well for spectral wave heights for the OS4 
location (RMSE < 0.1 m for 𝐻𝐻𝑚𝑚0 and RMSE < 0.03 m for 𝐻𝐻𝑚𝑚,LF). 

To implement this model improvement, it is recommended to reintroduce the OS4 location into 
the SWAN model output. Since September 2023, data from the OS4 location has been 
unavailable due to updates in the FEWS system. This issue has already been reported to the 
relevant parties to restore the location's data availability. Once resolved, the implementation of 
the ML model for the OS4 location can proceed in the same manner as the previous 14 
locations trained (Den Bieman et al., 2023).  

In this study, we successfully applied the methodology from Den Bieman et al. (2023) to 
another SWAN-KS model location. The main limitation in extending this approach to additional 
locations is data availability, highlighting the need for a system to monitor data quality and 
ensure continuous access to both output data and observational measurements. 
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