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STELLINGEN

1.

Voor de bepaling van het zandtransport in open waterlopen met behulp van
merkstoffen, kan thans nog niet algemeen worden aangegeven of radioactieve
merkers of luminoforen moeten worden gebruikt.

2.

Bij zandtransport-metingen met merkstoffen voor rivieren zoals de Neder-
landse bovenrivieren moeten luminoforen worden gebruikt.

3.

Bij de ontwikkeling van bodemtransportmeters moet uitdrukkelijk rekening
worden gehouden met het stochastische karakter van het transportverschijnsel.

4.

De door CoLBy en HEMBREE gebruikte benaming ,,modified Einstein-proce-
dure’ werkt verwarrend.

CorBy, B. R. and C. H. Hewmsreg, ,,Computations of total sediment
discharge in the Niobrara River”. U.S. Dept. of the Interior. Water-
Supply-paper No. 1357 U.S. Geol. Survey 1955.

3.

Bij praktische berekeningen met betrekking tot niet-permanent bodem-
transport in open waterlopen, is het gebruik van een pseudo-viscositeits-
methode sterk aan te bevelen.

6.

De invloed van regime-wijzigingen op de bodemligging van een rivieren-
systeem met vrijwel gefixeerde oevers, kan worden bestudeerd met een combi-
natie van een wiskundig- en een fysisch model. Een opzet waarbij het hoofd-
accent op het wiskundig model valt, is aan te bevelen.
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De afleidingen met betrekking tot de bedvormende afvoer van een rivier, zoals
deze voorkomen in het Nedeco-rapport over de Niger en de Benue, kunnen
beduidend worden vereenvoudigd door niet a priori uit te gaan van de verge-
lijking van MEYER-PETER en MUELLER.

Nedeco, ,,River Studies and recommendations on the improvement of
Niger and Benue”. North Holland Publishing Company, Amsterdam,
1959.

8.

De door VorLmERs onderzochte oplossingen voor de aansluiting van een kanaal
of een haven aan een bovenrivier, hebben voor Nederlandse omstandigheden
vrijwel geen praktische betekenis .

Vorrmers, H. J. ,,Systematik der Masznahmen zur Verringerung der
Schwebstoffablagerungen in  Binnenhafenmiindungen™. Proefschrift,
Karlsruhe, 1963.

9.

Voor het ontwerpen van een optimaliseringstechniek voor waterbeheersings-
plannen ten behoeve van waterschappen, kan de door het Waterloopkundig
Laboratorium ontwikkelde methode voor de berekening van de waterbeweging
in een systeem van open leidingen, als uitgangspunt dienen.

Mever, TH. J. G. P., C. B. VREUGDENHIL and M. DE VRIES, ,,A method of
computation for non-stationary flow in open-channel networks”. IL.A.H.R.
Leningrad 1965, paper 3.28.

10.

Het is sterk aan te bevelen de student in de weg- en waterbouwkunde tijdens
de propaedeuse te onderwijzen in de beginselen van het moderne rekenen.



ABSTRACT

Making use of a mathematical model solving the complete Navier-—
Stokes equations for steady flow in coiled rectangular pipes,
fully-developed laminar flow in shallow curved channels is
analysed physically and mathematically. Transverse convection

of momentum by the secondary flow is shown to cause important
deformations of the main velocity distribution. The model is also
used to investigate simplified computation methods for shallow
channels. The usual 'shallow water approximation' is shown to
fail here, but a method starting from similarity hypotheses for
the main and the secondary flow works well. On the basis of this
method, a simplified mathematical model of steady turbulent flow

in river bends is developed and verified using the results of

laboratory experiments and fully thrée-dimensional flow computations.

This model works well for shallow and mildly curved channels, but it

shows important shortcomings if the channel is less shallow or

sharplier curved.
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Summary

As a contribution to the development of a mathematical model of

the flow and the bed topography in river bends, steady flow in
curved channels is analysed physically and mathematically and

a computation method for this flow is developed.

After formulating and normalizing the system of differential
equations that describes the flow in general (chapter 2), fully-
developed laminar flow in curved rectangular ducts is analysed

on the basis of solutions of the full Navier-Stokes equations

for this flow case (chapter 3). This analysis leads to the con-
clusion, that the transverse convection of momentum by the second-
ary flow can give rise to considerable deformations of the main
velocity distribution: the main velocity maximum tends to shift

from the inner to the outer bend and from the water surface down-
wards. These deformations are shown to increase with the Dean
number, defined as the Reynolds number multiplied by the square

root of the curvature ratio. Other curvature effects, such as the
'bend resistance', are explained from this redistribution of the
main velocity.

In chapter 3 it is also shown, that the sidewall regions, and
especially the one near the inner wall, play an important part in
the main flow redistribution process in curved rectangular channels.
As a consequence, the usual 'shallow water approximation', in which
the sidewall regions are ignored, are not applicable to flow in not
too mildly curved rectangular channels, not even if they are shallow.
This is illustrated and elaborated in chapter 4, where some other
simplified computation methods for fully-developed laminar flow in
shallow rectangular curved ducts are investigated, as well. A method
based on similarity hypotheses for the main and the secondary flow
appears to yield satisfactory results.

In chapter 5, the main and the secondary velocity components in de-
veloping curved channel flow are defined and the similarity hypotheses
from chapter 4 are applied to the main and the secondary velocity
distributions. This forms the basis of a computational model of de-
veloping laminar flow in curved rectangular channels, on the analogy

of the aforementioned computation method for fully-developed curved flow.
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Some of the most important simplifying assumptions underlying this model
are verified using a sensitivity analysis. This leads to the conclusion
that the depth-averaged main flow computation can better be uncoupled
from the computation of the magnitude and the direction of the bottom
shear stress, the latter making higher demands upon the description of
the main velocity profile and the secondary flow. Finally, a global and
qualitative comparison of the model predictions with measured depth-
averaged main velocity distributions in turbulent curved channel flow
yields encouraging results.

In order to make the next step to a mathematical model of the flow in

a river bend, an adequate turbulence model has to be formulated.
Postulating that this model must be as simple as possible, it is based
on a mixing length hypothesis (chapter 6). When compared with measure-
ments in straight channels with a shallow rectangular cross-section,

it appears to work well. In addition, the influence of the most important
assumptions in this turbulence model is investigated using a sensivity
analysis. This makes clear, that the secondary flow intensity highly
depends on the overall mean value and the vertical distribution of the
turbulence viscosity.

Making use of this turbulence model and on the analogy of the mathematical
model of developing laminar flow, a simplified model of turbulent flow
in curved channels of shallow rectangular cross-section is developed in
chapter 7. Once again, the most important simplifying assumptions are
verified through a sensivity analysis. A preliminary comparison with
measured data gives rise to a moderate optimism about the model per-
formance.

As a last step (for the time being) towards a mathematical model of the
flow in a river bend, the model described in chapter 7 is generalized to
channels of more or less arbitrary, but shallow cross-sectional shape.
This is achieved by transforming the cross-section to a rectangle. Though
this gives rise to additional terms in the differential equatioms, the
character of the mathematical system remains unalterad and the solution
procedure can be essentially the same as in chapter 7. On comparison
with measured data from straight trapezoidal channels, however, the tur-

bulence model appears to need modification. This is done by introducing
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lateral diffusion into the turbulence viscosity.

In chapter 9, the model is verified using the results of various
laboratory experiments and of fully three-dimensional mathematical
simulations of two of these experiments. The model appears to work
well for shallow and mildly curved channels, but it shows important
shortcomings in case of less shallow and sharplier curved flow. An
analysis of these shortcomings makes clear, that the similarity
hypotheses underlying the model do not apply to developing curved
flow with a strong interaction between the main and the secondary
flow, in spite of their approval for fully-developed curved flow,
even at higher Dean numbers. Removing this defect, if possible at
all, makes the model so expensive, that such cases can just as well
be simulated mathematically with a fully three-dimensional model.
On the other hand, the model can be simplified drastically in case
of shallow, gently curved rivers with mildly sloping banks. Since
many rivers meet these requirements, or can be schematized as such,
a strongly simplified and economic model like this is very attractive
as part of a mathematical model of the flow and the bed topography
in curved alluvial rivers.

Finally, chapter 10 resumes the most important conclusions and some
of their practical implications. Furthermore, recommendations are made
for the practical application of the simplified mathematical models

and suggestions for further research are given.
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total dynamic viscosity

dynamic turbulence viscosity

dynamic turbulence viscosity in uniform rectilinear shear flow
mean turbulence viscosity in uniform rectilinear shear flow
channel width

constant in the stream function equation of the secondary flow
Chezy's coefficient

disturbance of C due to depth variations

value of C for the reference depth of flow

reference depth of flow

Dean number (= Re/e)

effective Dean number (= Reo/e)

constant in wall function approximation for turbulent flow
perturbations of the wertical distribution of the main velocity
acceleration due to gravity

local depth of flow

bottom shear stress factors for the main and the secondary flow
secondary flow convection factor (strongly simplified model)
length scale of transverse bottom level variations

mixing length

length needed for 907 reduction of the secondary flow intensity
pressure

pressure scale

discharge

normalized radial coordinate

radial coordinate

radius of curvature of the channel axis

characteristic radius of curvature

Reynolds number (= Vd/v)

effective Reynolds number (= de/Kb)

longitudinal coordinate

length scale of longitudinal flow variations

time

,, etc. factors due to transformation of the cross-section




normalized longitudinal velocity component

u
it known estimate of u

u depth-averaged value of u

u' = u/y

U Ul main and secondary flow constituents of u

UpsUyse e sty perturbations of u

u normalized longitudinal bottom friction velocity

UT resultant normalized bottom friction velocity

uogs U normalized longitudinal sidewall friction velocity (left, right)
U, normalized longitudinal-wall friction velocity

v normalized transverse velocity component

v velocity scale

Vo Vg main and secondary flow constituents of v

VreS resultant horizontal velocity

vR,v¢,v velocity components in cylindrical coordinate system
vé,vé,v; turbulent fluctuations of velocity components

vo,vl,...,vk perturbations of v
Ny

v transverse velocity factor at the bend exit

0

v, normalized transverse bottom friction velocity
o Vg resultant bottom friction velocity

Vom Vrg main and secondary flow constituents of V.

w normalized vertical velocity

LAV main and secondary flow constituents of w

Vo Voo normalized vertical sidewall friction velocity (left, right)

A transverse coordinate

y+ dimensionless wall distance

; wall distance

z vertical coordinate

2y bottom level

zg water surface elevation

normalized turbulence viscosity

! vertical distribution function of the turbulence viscosity

a
a
D lateral diffusivity in the turbulence viscosity equation
e normalized total flow energy

b

vertical distribution function of the main velocity
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vertical distribution function of the secondary flow
normalized local depth of flow

secondary flow intemsity (= %]VSI)

Nikuradse sand roughness

normalized mixing length

normal coordinate in streamline coordinate system

normal coordinate after transformation of the cross-section
normalized total pressure

depth~averaged value of p

cross~sectional mean value of p

radius of curvature of the streamlines and the normal lines
of the depth—averaged main velocity field

streamwise coordinate in the streamline coordinate system

streamwise coordinate after transformation of the cross—section

normalized streamwise velocity component

normalized normal velocity component (in App. B and I: v/so)
main and secondary flow constituents of v

normalized vertical coordinate after transformation of the

cross—section

underrelaxation factor

inclination of the main flow isovels

inclination of the streamlines of the secondary flow
direction of the bottom shear stress

direction of the velocity at the bottom

overall mean turbulence viscosity factor

wall layer thickness (bottom, left wall, right wall)
total bend angle

curvature ratio d/RC

normalized vertical coordinate

normalized bottom level

normalized water surface elevation

level of zero horizontal velocity
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n dynamic viscosity of the fluid

! longitudinal slope factor

Y value of 1 in fully-developed straight channel flow

K Von Karman's constant

X normalized length scale of secondary flow decay

v kinematic viscosity of the fluid

£ normalized transverse coordinate

g normalized transverse coordinate after transformation of the

cross—section
0 mass density of the fluid
o = g/eRe normalized longitudinal coordinate

U¢¢,ORR,GZZ normal components of the stress tensor

TR¢,T¢Z,TRZ shear components of the stress tensor

Tb,Tb bottom shear stress

Tbg’T;:S normalized components of the bottom shear stress

Tbgm,1b¢m normalized bottom shear stress components due to the main flow
T1¢, Tr¢ normalized longitudinal components of the sidewall shear stress
Tipr Tyr normalized vertical components of the sidewall shear stress

¢ tengential coordinate

N tangential coordinate after transformation of the cross—section
[ stream function of the depth-averaged main flow

¢tot total bend angle

Y] normalized stream function of the secondary flow

P’ = Re ¥

¥ degree of development of the secondary flow intensity

fp’¢1""’wk perturbations of ¥

Wy W depth~averaged main flow vorticity
0 secondary flow vorticity
w! = Re w
5 s
v Laplace operator







1. Introduction

1.1. Relevance of the investigations

The increasing use of rivers (navigation, water supply, waste
discharge, cooling water, etc.; see Jansen, 1979) has made their
control and improvement increasingly important. The measures

needed to achieve this, however, become more and more complicated
and require ever more accurate predictions of their effects on the
flow and the channel topography.

A complicated and most interesting phenomenon to be dealt with in
such predictions is the essentially three-dimensional flow pattern
in a curved stream (bends, bifurcations) and its interaction with

an alluvial channel bed. The characteristic helical flow pattern
drastically influences the dispersion of suspended or dissolved
matter and the bed topography in a bend often differs strongly from
the one in a straight reach, such that it can even become limitative
to the navigability of the river. Hence an efficient and accurate
prediction method for the flow and the bed topography in curved
alluvial streams is almost indispensable when considering river
improvement measures.

Hitherto, the decision on such measures used to be based on pre-
dictions obtained from hydraulic scale models, even though the
complicated flow pattern in a bend can give rise to scale effects
that make the model results hard to interpret. The increasing
facilities of electronic computers, however, provide the possibility
to develop mathematical models, in which there is no question of
scale effects. Though such models are not likely to replace hydraulic
scale models completely, at least in the near future, they will
facilitate the understanding of the physical phenomena and, when
applied in combination with hydraulic scale models, they will induce
a greater flexibility of the model investigations.

For most alluvial rivers, the mathematical description of the inter-
action between the flow and the bed topography can be based on the
alternate application of a quasi-steady flow computation, a sediment

transport model and a computation of the bed level variation (Jansen,

1979). In each of these elements, the channel curvature gives rise




to important complications, most of which are insufficiently under-
stood. Therefore, the three elements can better be developed sepa—
rately, before being composed to a bed formation model for curved
alluvial rivers. The flow computation element is subject of the

present thesis.

The development of a mathematical model of the bed formation in
curved alluvial channels is one of the projects of the River
Research Group of the joint hydraulic research programme T.0.W.
(Toegepast Onderzoek Waterstaat), in which Rijkswaterstaat, the
Delft Hydraulics Laboratory and the Delft University of Technology
participate. Within this framework, the flow modelling is mainly
concentrated in the Laboratory of Fluid Mechanics of the Delft

University of Technology, Department of Civil Engineering.

1.2, Previous work

Flow in bends of pipes and open channels, with its striking helical
character, has fascinated scientific investigators for a long time
past. In the second half of the nineteenth century, Boussinesq (1868)
published a correct mathematical analysis of mildly curved laminar
flow in wide ducts and channels, and Thomson (1876, 1877, 1879) was
the first to draw the right conclusion about the cause of river
meandering from observations of spiral flow in river bends and curved
experimental channels.

This has been the start of a more or less continuous flow of publica-
tions initially in two almost independent series, one concerning

the flow in curved ducts, with the emphasis on hydrodynamics, and one
dealing with river flow, from a more hydraulic and geophysical point
of view. Though not directly relevant to river engineering, the former
group of publications should not be ignored. It contains a great deal
of experimental information (Eustice, 1911; White, 1929; Taylor, 1929;
Adler, 1934 and many others; see also chapter 3) that can contribute
to the understanding of curved flow phenomena, also in river bends.
Moreover, this group has a considerably longer tradition of mathema-
tical modelling (Dean, 1927 and many others after him; see also Smith,

1976) and it is usually first in applying new computation techniques




(Patankar et al., 1974), which can also be of use in river bend
models.

The second group is closely connected to river engineering. Here
the developments have proceeded somewhat slowlier, at least from
the point of view of mathematical modelling. For a long time,
publications in this group have reported only empirical obser-—
vations and laboratory experiments, with at most a rather primi-
tive mathematical analysis (Fargue, 1908; Beyerhaus, 1922;
Hinderks, 1927; Blue et al., 1934; Mockmore, 1944; Shukry, 1949
and many others). Apart from the application of potential flow
theory to the main flow and the water surface configuration in
river bends (Boss, 1934 & 1938), it was only in 1943 and 1947

that Van Bendegom*) published a proper mathematical description

of the secondary flow and a prediction method for the flow and

the bed topography in alluvial channel bends.

Some 10 years later, a most important development in the mathe-
matical modelling of curved channel flow took place in the USSR,
with Ananyan (1957; Engl. transl. 1965) and Rozovskii (1957; Engl.
transl. 1961) as the most prominent exponents. They introduced the
use of perturbation methods (with the curvature ratio d/RC as a
perturbation parameter) in mathematical models of flow in river
bends (cf. Dean, 1927; see also chapter 4). Especially Rozovskii's
outstanding monograph contains many brilliant ideas and is still
one of the most-cited works on this subject.

Many computational methods published since (and, in a way, also
Van Bendegom's method) can be classified as perturbation methods
for small curvature ratios (Yen, 1965; De Vriend, 1973; Engelund,
1974; Tkeda, 1975; De Vriend, 1976 & 1977; Falcdn, 1979; see also
chapter 4). The essential feature all these methods have in common
is the assumption that, in a first approximation, the main flow is

not influenced by the secondary circulation. As will be shown in

Unfortunately, these publications are written in Dutch. Only after
the latter had been translated into English (1963), it became more
widely known, but it still has not received the international

estimation it deserves (see also; Allen. 1978).




the present thesis (chapter 4), this is a misconception in case
of not very mildly curved channels.

Although the role of secondary flow convection in the redistri-
bution of the main velocity in a bend was recognized rather
early (Einstein et al., 1954; Rozovskii, 1961; Fox et al., 1968;
Callander, 1978), it was incorporated only recently in a simpli-
fied mathematical model (Kalkwijk et al., 1980), and that only
for the specific case of gently curved non-rectangular channels
with mildly sloping banks. More generally applicable simplified
models accounting for this effect, however, are still missing.
Along with the increase of computer facilities, fully three-
dimensional computation methods have become increasingly im-
portant, also for curved channel flow (Patankar et al., 1974 &
1975; Pratap et al., 1975; Leschziner et al., 1979; see also De
Vriend et al., 1981). Hitherto, however, such computations have
been incidental *), as they are too expensive for routine
computations, at least for the time being. Besides, computations
for channels with a more or less arbitrary cross-sectional shape,

as would be needed in a river bend model, have not been reported

yet.

1.3. The present investigations

The present investigations comprise the analysis and the computation
of steady flow in curved ducts and channels, with the object to im-
prove the insight into the physical phenomena and to develop a
simplified computation mehtod that can be incorporated in a mathe-
matical model of the flow and the bed topography in alluvial river

bends.
After formulating and normalizing the basic system of differential

equations and boundary conditions, a mathematical and physical

analysis of fully~developed laminar flow in curved rectangular ducts

Unfortunately, these computations are seldomly followed by a physical
analysis of the results, which could have contributed considerably to

a proper understanding of curved channel flow.




is made on the basis of solutions of the full Navier-Stokes
equations. As the laminar and the time-mean turbulent flow

patterns show globally the same features in a bend and the most
important phenomena to be considered are mainly a matter of
convection, the conclusions drawn from this analysis are likely

to apply to turbulent flow, as well, at least qualitatively.

These full Navier-Stokes solutions will alsc be used to verify
various approximative computation methods and simplifying
assumptions. This is to yield a simplified computation method

that can be applied in the mathematical model. In the first
instance, this model is developed for laminar flow in curved
rectangular channels, in order to have continuity with the fore-
going investigations and to avoid too many complications at a

time. As far as possible, the sensitivity of the model to the under-
lying assumptions will be tested and a qualitative comparison will
be made with measured data from turbulent flow experiments.
Subsequently, the modelling of turbulence is considered and the
suggested turbulence model is tested for straight rectangular
channels, The resulting model is to be incorporated in a mathema-
tical model of turbulent flow in curved rectangular channels, on

the analogy of the laminar flow model. Once again, the sensitivity
of this model to the underlying assumptions will be tested and a
global comparison with laminar flow computations and measured data
will be made. Next, the model will be extended to non-rectangular
channels with a more or less arbitrarily shaped shallow cross-—section.
The resulting mathematical model will be verified by comparing its
results with measured data from various laboratory experiments in
rectangular and non-rectangular curved flumes and with the results
of a fully three-dimensional mathematical simulation of two of the
rectangular channel experiments. The shortcomings of the model

will be analysed and remedial suggestions will be made.

Finally, the investigations will be evaluated and the most important
conclusions and their practical implications will be resumed. In
addition, recommendations for the practical application of simplified

mathematical models and suggestions for further research will be given.



2. General mathematical formulation

2.1. Channel geometry and coordinate system

The present investigations mainly concern the essential features
of flow in river bends and its mathematical modelling. From this
point of view a more or less arbitrary channel pattern is likely
to be only a complicating factor of no essential importence.
Therefore considerations are limited to channels of constant
width, with a longitudinal axis consisting of a series of
circular arcs#). For the same reason the free surface is
approximated by a frictionless hcrizontal plate ("rigid-lid-
approximation"), which implies that the Froude number is assumed
small.

Accordingly, the coordinate system to be used in the mathematical
model consists of a series of cylindrical systems, each with a
vertical axis through the centre of curvature of the relevant

part of the channel sxis (see figure 1). For the sake of simpli-

city, the model will be described here for a single channel
section with a cicular axis of radius RC, using a cylindrical

coordinate system (R,¢,z) with the z-axis pointing vertically

upwards and z = 0 at the surface (figure 2).

2.2. Conservation of mass and momentum

Three—dimensional incompressible fluid flow can be described
mathematically by a system of four differential equations
representing the conservation of mass and of the three components

of momentum. If t denotes time, Vps V and v, the velocity

b
RR’ U¢¢, Oy Ré’ TRe and T¢Z the components of
the stress tensor, p the mass density of the fluid and g the

components, o T

acceleration due to gravity, these equations can be written as

(Bird et al., 1960)

*Y The radius of curvature of such an arc can be chosen infinitely

large to yield a straight channel section.
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o LR 3¢ 3R 3z R g .
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For steady laminar flow the time~derivatives in equations

(2.1) through (2.3) can simply be omitted. Steady turbulent flow,
however, is essentially time-dependent, though the turbulence-
averaged quantities do not vary with time. In that case the
above time-dependent momentum equations must be integrated over
a time-interval that is much larger than the turbulence time
scale to yield momentum equations for the turbulence-averaged

quantities.

In addition to terms with the turbulence-averaged velocity
and stress components similar to the omes in (2.1) through (2.3),
however, these equations contain terms with the time-mean
products of the velocity fluctuations (see, for instance; Hinze,

1975). As these terms are similar to the stress-terms in the time-

dependent equations, the tensor with elements - o v&z, - p véz, -p v;z,‘

-0 véV;, -9 VéVé, -p V;Q; is called the Reynolds stress tensor.



Anticipating on what is stated in chapter 6 on the modelling

of the Reynolds stresses, the so-called Boussinesq hypothesis

is adopted: on the analogy of the relation between the viscous
stress tensor and the rate-of~strain tensor through the

molecular viscosity n(see, for instance; Landau et al., 1975),

the Reynolds stress tensor is related to the rate-of-strain

tensor of the turbulence-averaged flow through a scalar turbulence
viscosity At (Hinze, 1975).

Hence, if p denotes the isotropic pressure,

— v v
p) 1% 'R
- re o P, =
YSR p+ 2(n+ At)(R 5% + R) (2.5)
— v
2 R
- [ =
9gr T P VR p+2(n+A) 57 (2.6)
-z 3,
- t = e —— .
O, " PV, p+2(n+A) 5 (2.7)
v ov v
1 R ) ¢
- Tof = - 2 L S
Ry TP VRV T (WP ADR T Y TR (2.8)
BVR v
- Tyl = .
"Rz P VRV, (n+ At)(éz * oR ) (2.9)
1 avz Bv¢
- Tyl = o e [
T¢Z 0 V¢vz (n + At) ) + = ) (2.10)
, where Vps v¢, v, and p are turbulence-averaged quantities now.
Substitution of these expressions into the turbulence-averaged
momentum equations yields, after some elaboration and for
A=n+ At’
3 3
v__(b__‘_’i_*_v —.vi*.V B+VRV¢=_1._];§R+A(V2V -.‘]i+..2___3113_+
Z 36 R 3R z 3z R 5 R3¢ p $ " R2 g2 96




Lz 1% TR RNy Ve
p R 3¢ ‘R 3¢ R 3R "R 3¢ 3R R
v v
3A [} 1 _ 'z
‘5 Gt R )] (2.11)
v, 3V v, V. v2 v. v
¢ Ry v, R, v _R_ o 13,2 (Vzv -— - ¢) +
R 3 R 3R z 3z R 5 3R T b R 77259
1,108 1% Yy Y sa VR
sLll L R, 0 &, , R R,
> 'R 3¢ R 3¢ 3% R 3R 9R
v, v
A R z
Y52 Gz tw ) (2.12)
v, 3v v ov
b _z 2 2. .13 _ A2
R 3¢ * VR aR z 3z p 3z g+ o} v vz *
3
+ l.{l.gé.( 3v¢ + l.Eﬁf) + 24 (EZE + EZE) + 2 24 _ZE (2.13)
> 'R3¢ '3z R 9 3R 3R 3 3z 9z
2 2 2
, in which V2 = }§-§—§'+ §—§-+ % %§,+ é—f
R” 36 3R 3z

2.3. Boundary conditions

The boundary conditions arising from the impermeability of the
"water surface" and the vanishing of the shear stress tangent

to this surface can be formulated as

v, = 0 (2.14)
z=0
and
v V.
¢ = 0 R
A 5700 = 05 A 5,0 =0 (2.15)
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, respectively. As the surface is kept fixed, it must be
considered as a frictionless rigid plate exerting normal
stresses on the fluid. Consequently,the dynamic free surface
condition p 2=0 = 0 is not applicable here®).

The boundary conditions at the fixed boundaries stem from
the impermeability of these boundaries and the no-slip
conditions. If the maximum channel width occurs at the

surface, this yields
v, =0; v, = 0; v, = 0 for =z = - h and

for R = R_+ 2 *¥ (2.16)

, in which h is the local depth of flow and B is the channel

width.

In addition to these 'cross—sectional" boundary conditions,
inflow and outflow conditions must be formulated. Most of
these conditions will be given in a later stage. Only the
discharge Q is mentioned here, since it plays a part in the

integral condition of continuity (cf. equation (2.4))

RC + B/2 0
S dR [/ wv,dz =Q

¢
R, - B/2 -h (2.17)

and it will be used in the normalization of the system of

differential equations and boundary conditions.

*) After the velocities and the pressures have been computed, this
dynamic condtion can be used to estimate the elevation of the

actual free surface (cf. De Vriend, 1976).

%) The latter conditon applies only if there are vertical sidewalls.
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2.4, Normalization

In order to find out which parameters characterize the flow
and to get an insight into the relative magnitude of the
various terms, the mathematical system described in the
foregoing paragraphs is normalized, i.e. each term of the
equations is written as the product of a constant scale-
factor and a variable dimensionless quantity of the order of
magnitude O(l)*).

It seems appropriate to carry out this normalization by
adopting an adequate scale-factor for each variable, either
dependent or independent, and applying it to any term in which
the relevant variable occurs. So if f is a function of x,

these two variables are normalized by
f(x) = F » f(x) and x =X % x (2.18)
, F and X being constant scale-factors. Now it is assumed

that the n~th derivative of f with respect to x can be

normalized using the same scale-factors F and X, so

n n n
dE_E L 4f with g_,g = 0(1) (2.19)
ax®™ X d™ de

for any n occurring in the system.

For most of the variables in the present system this approach
works well, but it gives rise to problems for the radial
coordinate R, which occurs here in three essentially different
types of terms, viz.

. terms introduced by the use of curvilinear coordinates (in

.. . 3
general: terms containing a factor % that is not coupled to 569,

n
terms containing a tangential derivative -
R" 3¢
n
terms with a radial derivative —— .
R

¥) A quantity f is of the order 0(e™) if lim £ exists.
e40 €
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The normalization of R in either type of terms should be considered
separately. If R tends to infinity, the terms of the first type

. 1. .
vanish. Hence the factor 7 in these terms can be mormalized by

|

with %.= 0(1) (2.20)

A
!
W‘H

, in which RO is a characteristic radius of curvature for

the flow to be considered (in case of a single circular bend,
for instance, the radius of curvature of the channel axis is

an appropriate sczle-factor).

For the terms with radial derivatives, especially the diffusion
terms near the sidewalls, which do not vanish if RO tends to

infinity, another normalization is needed. To that end an

additional transverse coordinate y is introduced
R=R +vy (2.21)

, so that . é—-. As the diffusion of momentum will be

R oy
mainly due to frictiom at the fixed boundaries, the depth-
of-flow scale d will be an adequate scale-factor for y as
long as the channel aspect ratio d/B is of the order 0(1),

i.e. the channel is not deep and narrow. Hence

n n
v =d.£ and 2—= —1; _a_? with 3—5 = o(1) (2.22)
R a® 3¢ 5

, where d can be taken as the overall mean depth of flow, for
instance. For the same reason d is chosen as a scale-factor

for z:

n It
z=d.c and e = % 3 with 3—5 = 0(1) (2.23)
ag” 14

The overall mean velocity V is taken as a scale-factor for the

tangential velocity componént
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v, = Vu with Vv = Q (2.24)

In addition to this tangential velocity component, radial and
vertical components will occur in curved channel flow.

On the assumption that all deviations from fully-developed
straight channel flow*) are due to curvature, these trans-

verse velocity components are normalized by

=y d _ o d
Ve = v RV and v, = v v (2.25)
0 0
The total viscosity A is normalized using its overall mean

value KO in the equivalent uniform rectilinear shear flow:
A=1Raa (2.26)

The pressure p, or rather the total pressure p + pgz, and

the longitudinal coordinate s = R(¢—¢O), in which ¢O is the
value of ¢ at the beginning of the channel section considered,
should be normalized in such a way, that the longitudinal
pressure gradient in the ¢-wise momentum equation (2.11) is
appropriately represented. In the limit case of fully-
developed flow in an infinitely wide straight channel, this

equation reduces to

|5

3

v
¢
Ta (2.27)

o)

¥4

<O
i

1
O [
1]
®

+
° |3

-o-
+
O |

Flow through a prismatic straight channel of the same cross-—
sectional shape, with the same bottom roughness and the same
discharge as in the curved channel to be considered; the
secondary flow due to turbulence in channels of non-circular
cross~sectional shape (see chapter 6) is left out of

consideration here.
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If the scale-factors for p + pgz and s are formally indicated

by P and S, respectively, this equation can be written as

__P 3 AOV EZu da du
0=-353%* 2@ 2 o
0 od 5z g 9L

As the mathematical model should include this limit case, the
scale-factors of the pressure gradient term and the vertical
diffusion terms in (2.28) are chosen equal. On the other hand,
all velocity variations with s are deviations from the
equivalent fully-developed straight channel flow, i.e. they

are due to the channel curvature. Therefore RO is an appropriate

scale—-factor for s, so that

R R
_ ot 0 2 1 0
S = RO and P = AOV — = oV ﬁgg T

(o9

, in which Re, denotes the Yoffective" Reynolds number de/KO.

0

Defining the curvature ratio ¢ as d/RO, the normalized system

of differential equations and boundary conditions becomes

1 3u v € oW _
v e Tag T r Va0
u 3u du du, e --Ll3
eReg (T g * Vgt Vgt T %6
2 2 .2 2 3
3 37 u e” 3 u € du € € v
g (&8s L2y E Sl oy Sy 2 )
2c? g2 22 agl T3 2 27 5%
52 3a ,1 3u € 3a ,du € e v
MR Tl TR T e T
2
da ,9u e oW
M R T

(2.28)

(2.29)

(2.30)

(2.31)

ikl




2
3 u 3v v Vv 2 u
€ ReO (;>3¢ 3% 35 T € ReO - =
2 2 .2 2
%, 2 v v e 3v edv_e £ ,3u
setealmr—=rm =573 TV iyt
14 3% r 3¢ r r
62 3aq ,ou £ e2 v 2 3da v 2 3a ,9v ow
+';"—a-‘-(———é-—;u+}—’a—$)+28 a—g-gg-ﬁ‘a '5(—:‘(3—5*'5-6') (2.32)
u ow W ow
EREO(;3¢+V.§€+WE)_
2 2 2 .2 2 2
_§p_+Ea{u+u+i_é_ﬂ+§§."i}+§_§£(§_‘i+_€__§.‘l)+
L 5z ag2 r2 39 r 3E r 0% 9T r 3¢
2 da v , W 2 3a w
+ e 5E (3C + BE) + 2¢ 5C 5C (2.33)
B/2d ©
§df fudg =3 with  ho=h/d (2.34)
-B/2d -h
w=0; v=0; w=0 at c=-h andat E=+os (2.35)
w=0; a Leo; a LA 0 at r =0 (2.36)
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3. The mechnism of the velocity redistribution in a bend

3.1. Relevance of the investigation

A large number of curved flow experiments, both in laminar and

in turbulent flow, in open channels as well as in closed conduits,
has shown that, in addition to the secondary circulation, the flow
curvature gives rise to a systematic deformation of the main
velocity distrikution, even if the shape of the cross-section

is constant along the bend. As it is hardly possible to refer

to all experimental evidence at this point, some key references
will be given. For laminar flow: Mori et al. (1965) for bends

in circular pipes, Mori et al. (1971) and Humphrey et al. (1977)
for square pipes, Asfari (1968) for a rectangular open channel.
For turbulent flow: Mori et al. (1967) for circular pipes,

Howard et al. (1975) for rectangular pipes, Shukry (1949) and

Fox et al. (1968) for rather narrow rectangular open channels,
Francis et al. (1973) and De Vriend (1979b) for shallow
rectangular open channels.

Even though there are some unresolved problems left (Gotz, 1975;

De Vriend, 1979b; see also chapters 6 and 9), a qualitatively

and quantitatively acceptable explanation can be given for the
secondary flow (Boussinesq (1868) and many others later). For

the main velocity redistribution, however, no satisfactory
explanation has been given so far. Fully three-dimensional
numerical simulations of curved flow experiments (Patankar et al.,
1974 & 1975; Pratap 1975; Pratap et al., 1975; Leschziner et al.,
1979) lead to rather good predictions of the measured velocity
distributions, but the results of these computations were not
analysed far enough to give a physical explanation of the
veloecity redistribution. On the other hand, Rozovskii (1961)

and recently Falcén (1979) and Kalkwijk et al. (1980) showed that
this explanation can be found in the transverse transport of main
flow momentum by the secondary flow. Their approaches, however,
hold good for channels with gently sloping banks or in the central
region of very shallow rectangular channels, but without further

adjustments they are not applicable to the present rectangular channels.

-
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Therefore, considering that a proper understanding of the
important phenomena is indispensable for the development of

a simplified mathematical model, the main velocity redistribution
and its influence on the magnitude and the distribution of the

bed shear stress have to be analysed first.

3.2. Method of analysis

In order to avoid unnecessary complications, the analysis of the
main velocity redistribution will be carried out for the simplest
possible case: fully-developed laminar flow in rectangular

channels with a rigid-1id approximation for the water surface.

The fully-developed flow stage (i.e. the velocity and the trans-
verse pressure distribution show no more streamwise variations)

is hardly reached in natural rivers, as is shown by most of the
experiments cited in paragraph 3.1. Although streamwise variations
play a specific role in the velocity redistribution (see chapter 5),
they are eliminated in the first instant, in order to isolate what
is expected to be the most important cause of the redistribution:
the secondary flow.

The mathematical model eventually aimed at will have to describe
turbulent flow. The mathematical description of turbulence, however,
is a complicating factor introducing a great deal of uncertainty
into the model (see chapter 6). On the other hand, the secondary
flow and the velocity redistribution in laminar curved flow are
qualitatively similar to the ones in turbulent flow (cf. the
literature cited in par. 3.1). Therefore the present analysis is
carried out for laminar flow, which is described quite well by

the Navier-Stokes equations (Landau et al., 1975; Rouse, 1965).

The most important tool for the analysis is a newly developed
computational model solving the complete Navier-Stokes equations for
steady fully~developed laminar flow in coiled rectangular pipes,
which was tested using the results of experiments and of computations
with other mathematical models. It will be described briefly in para-
graph 3.3; for a more extensive description reference is made to the

relevant background report (De Vriend, 1978a). This mathematical
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approach provides the possibility of extensive parameter variations
and of omitting terms from the equations in order to assess the
influence of the various aspects of the elementary phenomena
(convection, diffusion). Besides, the mathematical model can be
used in a later stage, when investigating simplified computation

methods (see chapter 4).

3.3. Mathematical model of fully-developed laminar flow

The mathematical description of steady fully~developed laminar

flow in a coiled rectangular pipe can simply be derived from the
general system of equations given in chapter 2. For laminar flow the
total viscosity A is equal to the molecular viscosity n and the
effective Reynolds number Reo is equal to the "molecular' Reynolds
number Re. So if all tangential derivatives except the longitudinal
pressure gradient are omitted, the normalized system (2.30)

through (2.36) reduces to

v e W _ 3.1
5E + TV 3C 0 3.1)
2 2 2
du Ju 3 13 3 u 3 u £ Jdu 3
eRe (v 2+ w B+ Sy =Py du gdu g (3.2)
3E 52 7T ECI A B R L.
2
3 v v u
£”Re (v 52~+ 3T ¢ Re = -
2 2 2
Bl G Geinogy @
3z g r
3 dw ow op 2 Bzw BZW € dw
£ Re (v 5E-+ w 52) = - §E>+ € C;*f P+ ;’5€9 (3.4)
S g
B/2d 0

Joode fudc=§
-B/2d -1 (3.5)




u=0; v=0; w=20 at
- du_ 4. 3y
w = 03 Y 0; PYs 0 at

The equation of continuity (3

secondary velocity components

.1) concerns only the two

, so a scalar stream function

can be used to describe the secondary flow. Although there

are other possibilities (see,
& 1973b), the stream function
that the streamlines of the s

of constant P':

for instance: De Vriend, 1973a
' is defined in such a way

econdary circulation are lines

S 1 - 13y
v T and W= o 3¢
., so that

apr
4z - -3 ¥
dgldy'=0 YA v
9L

Elimination of the
yields a transport

w;, reading

Bwé dw' .
R — = 1
eRe (v 5E +w 5T vms) +
Bzm‘ Bzw' dw' 2
S . S . & __8 _ E_
>
5 ag2 r 3 r2

pressure from equations (3.3) and (3.4)

equation for the secondary flow vorticity

As the flow in a rectangular pipe of height 2d (-d < z < d)

is symmetric about the axis =z

= 0, these "rigid 1id" surface

(3.6)

(3.7

(3.8)

(3.9

(3.10)

conditions. for "open" channel flow can also be considered as symmetry

conditions for flow in a rect

angular pipe of double height.
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. v 0w _ 3V .
with g T or, regarding (3.8),
2 2
1 ,9%" %y e Ay
ot =L + - £y (3.11)
] r BCZ ag2 r 3¢

According to equation (3.10), the vertical derivative of
the centripetal acceleration term in equation (3.3) is the
only source of secondary flow vorticity. For low Reynolds
numbers the source term in (3.10) is proportional to Re,

so that it is obvious to define

v’ s
Y o= Y and W = RS (3.12)
, where { and w, can be expected to be independent of Re if
Re is small.
Making use of these definitions, the system (3.1) through
(3.7) can be replaced by
1 3y ,3u € 1 3y du 1 3p 2 82 *
eRe” {- ;-52»(5€~+ ;»u) + T T T E 38 + Voq - ;§~u (3.13)7)
3w dw 2
2,13 _s_ € 130 sy, 38 (uyy o
eRe” { r 3% (85 r ws) * r 3& 3L b+ T f—)) N
2
2 €
v I (3.14)
r
2, _ 9 E 3 _
AR 2 T rw (3.15)

As all velocity variations with ¢ are dropped, the operator

2 2
Vz reduces to E—E- + é—f +
3L 3E

wim

3
3E
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B/2d 0
;oaE fudr =3
-B/2d -1
du _ - 0. = = - =+ B
T 0 at z 0; u 0 at 1 and at £ + 74
=0 and %%’-=o at -1
o= 0 and %% =0 at i,gg
2
b=0 and -0 ac =0
t14
- - Re 3y - Re 3y
v r [ v r 3g
3 2+w2
Vi(p + e"Re —5 ) =
3w 2 2
S [ s e Re du
e”"Re (w 5E oW, -V I + ms) + = 3E
3 2 32 3
Bt 2V 4 g=-1; E=0 at =0
3 Els
14
3 2 azw € ow B
T (;E§'+ < gg? at &=t 5%

The velocity components u, v and w and the pressure p are

solved from this system, which seems mathematically more

attractive than (3.1) through (3.7): if equations (3.14) and
(3.15) are combined to one fourth-order equation for ¢, only
this equation and the longitudinal momentum equation {3.13)

have to be solved simultaneously, whereas the system (3.1)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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through (3.7) requires the simultaneous solution of four
differential equations (see, for instance, Joseph et al., 1975).

Equation (3.13) and the equation for ¥

4 4 4 3 3, 2.2 3
M+2__§__\b__+§__11’_+2£(?_‘£+ 8‘;))4-3_6__3_4)_3_5_‘9_:
ag® 3e23c et TS geag? % ag? =hs
3 3 2 2 2
cre? (- L2 (U 2N, g edu, e
9L Tapact gt T gz T3 e
3 3 2 2
199 .87y, 3¢ e 37y du
+ L2039, - E2 ¥y 08 (3.24)
r 3% 853 Bgzag r 3ED3L 3

, which are two coupled non-linear partial differential

equations, must be solved iteratively. Therefore the following

iterative procedure has been used to solve the system (3.13)

through (3.24):

a. estimate U; :taking ¢ = 0, for instance, is rather interesting,
since in that case step b yields the main velocity distribution
without influence of convection.

b. solve u and %%»(which can easily be shown to be a constant)
from the longitudinal momentum equation (3.13) and the integral
condition of continuity (3.16), imposing conditions (3.17) at
the boundaries;

c. solve ¢ from equation (3.24) with conditions (3.18) through
(3.20);

d. repeat steps b and c until the termination criterion

n-1
max {iu(n) - u( )]} < £ (8 << 1) (3.25)
. AR
is satisfied );
In the actual computations the convergence of the iteration procedure
was improved by '"underrelaxation', i.e. by taking into account only a
fraction of the changes in u from one iteration step to another. So if

N . . . . .
u(n> is the solution of (3.13) in the n-th iteration step,

MR, (O BN SRR N (0 <o <)

-
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e. determine the secondary velocity components from (3.21).

f. solve the transverse pressure distribution from equation
(3.22) with boundary conditioms (3.23).

Further details of this procedure are given in the relevant

background report (De Vriend, 1978a).

3.4, Verification of the model and applicability

As was stated before, the present model is nothing new in the

field of fully-developed laminar flow computations. Therefore

it will suffice here to state that the mathematical model was

verified in three different ways:

. by comparing its results for small values of the Dean number
De = Re/e with analytical solutions given by Ito (1951), Cuming
(1952) and De Vriend (1973a & 1973b),

. by comparing its results with those from other numerical models
described by Cheng et al. (1970), Joseph et al. (1975) and Cheng
et al. (1976),

. by comparing its results with measured data given by Mori et al.
(1971).

For a more extensive description of this verification reference

is made to De Vriend (1978a).

From the aforementioned comparisons it became evident that for

low and intermediate Dean numbers (De < 60) the model gives a

good description of fully-developed laminar flow in coiled pipes

with a rectangular cross-section of not very high aspect ratio d4/B.

In contrast with similar models solving equations (3.14) and (3.15)

instead of the stream function equation (3.24) (Cheng et al., 1976;

see also Roache, 1972), the convergence of the present iteration

procedure becomes very poor if the Dean number exceeds the value

60. Regarding the requirements to the mathematical model of

turbulent flow in natural river bends, however, this limitation

is acceptable, as can be shown by the following reasoning.

In laminar curved flow the Dean numbter indicates the importance

of the convective transport of momentum by the secondary flow

with respect to the molecular diffusion (see equations (3.13)

and (3.24)). Likewise, in turbulent flow the Dean number should
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indicate the importance of convection with respect to turbulent
diffusion, i.e. it should be based on the effective Reynolds
number Reo (see chapters 2 and 6). According to Engelund

(1964 & 1974), this effective Reynolds number can be estimad by

_ C
Reo =13 7§ (3.26)

, in which C denotes Chezy's factor. In practice C/vg will
range from 10 to 20 and in natural rivers the ratio of the
channel width to the radius of curvature will not exceed 0.5
(Leopold et al., 1964; see also Jansen, 1979). So in the most
extreme case the depth-to-width ratio may not exceed 0.1 in
order to have an effective Dean number smaller than 60. This
is thought to be an acceptable limitation.

It should be noted that in various flume experiments the
effective Dean number is considerably larger than 60 (Shukry
(1949): 150; Fox et al. (1968): 130; Rozovskii (1961): 70), so
that the mathematical model is not likely to apply to these

flow cases.

3.5. Influence of the Dean number

In the longitudinal momentum equation (3.13) as well as in the
vorticity transport equation (3.14) and the stream function
equation (3.24) for the secondary flow, the parameter eRe2
indicates the importance of the convection terms with respect
to the viscous diffusion terms. Dean (1928a) and Adler (1934)
showed that the resistance of low Reynolds number flow in
coiled circular pipes of moderate curvature can be expressed
as a power series expansion of the squared Dean number,

defined as

8.3 ‘a
L
c

2ot

(3.27)
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, a denoting the pipe radius. If the pressure gradient is
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is normalized in the same way as in chapter 2, this definition

can be elaborated to

[N
Bl

)? = Re' )

with Re' = T (3.28)

P

a.
R
c

So the resistance parameter 1n coiled circular pipes is
similar to the convection parameter in the present equations.
Therefore the quantity Reve will be referred to as the

Dean number.

0f all parameters in the system (also the curvature ratio ¢
and the channel aspect ratio d/B play a part), the Dean
number is the most important one for the velocity redistri-
bution (De Vriend, 1978a). Therefore, considerations will

be limited to the influence of this parameter. The channel
geometry is kept constant and, for convenience, the geo-
metrical parameters are taken the same as those of a rather
sharply curved flume in the Laboratory of Fluid Mechanics

of the Delft University of Technology (De Vriend, 1979b; see
also chapter 8): ¢ = 0.04 and d/B = 0.1.

The results of a series of computations for this geometry
and with Dean numbers ranging from O to 50, give rise to

the following observations.

a. Main velocity distrdibution (figure 3 a-b).

As becomes evident from figure 3, the main velocity distribution
in fully developed curved flow is strongly dependent on the
Dean number, i.e. on the convective transport of momentum by
the secondary flow. For De = 0 the horizontal distribution

of the main velocity is skewed inwards, so that the maximum
lies close to the inner sidewall; the vertical distribution
is practically parabolic then. As De increases, however, the
skewness is gradually inverted and the velocity maximum moves
towards the outer wall; along with this the velocity at the
surface is gradually reduced and at higher Dean numbers the

velocity maximum even lies below the surface.



26

b. Boundary shear stress (figure 3c¢).

The shear stresses at the fixed boundaries, which are proportional
to the normal velocity gradients, are influenced by the Dean
number through the main velocity redistribution. Figure 3c shows
that the tangential shear stress at the inner wall and at the
bottom near the inner wall is almost independent of De: the
horizontal and the vertical deformations of the main velocity
distribution are counteracting here. Further outwards at the
bottom and at the outer wall, however, the horizontal and
vertical deformations are acting in the same sense and the

shear stress increases strongly with the Dean number (see

also Falcdn, 1979).

c. Longitudinal pressure gradient (figure 4).

As was stated before, the longitudinal pressure gradient in the
axis, %%3 can easily be shown to be a constant if the flow is
independent on ¢. This constant, denoted by -1, is related to
the tangential shear stress at the fixed boundaries: integrating
equation (3.13) multiplied by r2 over the cross-section yields,

after some elaboration,

B/24d

0
B _ 2 3u 2 3u
3" s r 30| z=-1 dg + ST

~B/2d -1

2 3u
!, B dg - S 7 B dt
3 |E= 53 . £13 €~§a

Since for increasing De the main velocity gradients at the fixed
boundaries remain almost comstant or increase, the longitudinal
slope factor 1 may be expected to increase with De. Figure 4
shows that the ratio of 1 and the longitudinal pressure gradient

in the equivalent straight channel flow increases with De, indeed.

d. Secondary flow (figure 5).

The source term in the stream function equation for the secondary
flow (3.24) 1is §Z~(u2), so that the secondary flow will be rather
sensitive to the deformations of the main velocity distribution.

Figure 3 shows that for increasing De this source term tends to

{3.29)
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decrease in the inner half of the bend and near the surface
(where it can become even negative), whereas it increases

in the outer half and near the bottom. Hence the maximum

of the source term, which lies close to the inner wall and
about half-way the vertical for De = 0, gradually moves
outwards and downwards as De increases; the depth—averaged
value, uz(c = 0) gradually decreases all over the cross-
section.

As a consequence of this behaviour of the source term, the
stream function tends to decrease for increasing De

(figures 5a-b) and the centre of circulation, i.e. the point
where the maximum of y occurs, moves downwards and outwards,
the latter until De = 25. Then the outward moving tendency

is compensated by an inward one, which is caused by the

fact {not shown by figure 3) that the downward displacement

of the vertical maximum of %Z-(uz) is stronger near the

outer wall than near the inner wall. For the same reason the
centre of circulation moves inwards again for De > 25

(figure 5 a-b and 5 d-e).

The decreasing tendency of the maximum of the stream function,
3, is stronger for higher Dean numbzrs. Consequently, for small
De the quantity Del, which can be considered as a measure of the
secondary flow intensity*), is almost linear with De, but as the
Dean number becomes higher, a reduction occurs and for De > 40

(in square pipes even for De > 20) the secondary flow intensity

decreases again (figure 5c¢).

e. Transverse pressure distribution (figure 6).
Figure 6 shows the influence of the Dean number on the transverse
pressure distribution. The deformation of the horizontal distribu-

tion of the pressure shown in figure 6a (from concave for De = 0

to convex for higher De) can be explained from the redistribution

Red is a more appropriate expression for this intemsity, but as

e is kept constant, De{l can also be used.
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of u2, on the basis of equation (3.3) truncated to the two

most important terms

In addition, for all Dean numbers conSidered p is almost
constant along the vertical (figure 6b), i.e. the

pressure is practically hydrostatic. Hence it is concluded
that, for the Dean numbers considered here, the transverse
pressure distribution is hardly influenced by the secondary
flow, but completely dominated by the centripetal accelara-
tion of the main flow.

Figure 6a shows that the difference between the values of
p/szRe at the outer and at the inner wall hardly depends on

De. According to the definition (see also equation 2.29)

v ogs - O, Lo Re
P g eRe d2 = P

, this implies that for given p, v and d the transverse
pressure drop is closely proportional to Dez. This is
confirmed by figure 6c, where an exponent of 1.96 is found.
The same figure shows that the transverse pressure drop in
the shallow channel considered (d/B = 0.1) is about 5 times
as large as in a square pipe (d/B = 0.5) under the same

conditions. Apparently, the mean transverse pressure

gradients are almost the same in either case.

f. Total energy (figure 7).

Figure 7 gives the transverse distribution of the total energy,

normalized by

2, 2,2 2
_ €Re 1 2 - u” o+ e (v +w)
e —-—~DV2 (p *+ pgz + 5PV, ) =D+ ¢Re 5

(3.30)

(3.31)

(3.32)
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From this figure and the transverse pressure distribution
given in figure 6 it becomes evident that u2 plays a
predominant part in e. Consequently, the energy tends to
concentrate more and more near the outer wall as Te

increases and the vertical distribution tends to flatten.

The foregoing considerations show that most of the phenomena
to be observed when the Dean number is raised gradually from
0 to about 50 can be explained from the deformation of the
main velocity distribution. Explaining this deformation,

however, requires some further analysis.

3.6. Analysis of the main velocity redistribution

Regarding the longitudinal momentum equations for fully-developed

curved laminar flow

13 du e 13y duy
O e A A v T
2 2 2
%+?_§+9—3+%—§%—E7u (3.33)
ar 3g r
and for the equivalent fully-developed straight channel flow
2 2
0 = 10+——8§+———3; (3-34)
3z 3g

, three sources of difference between the main velocity

distributions in these flows can be distinguished, viz.:

- the factor % in the pressure gradient term of (3.33),

- the extra diffusion terms due to the main flow curvature,
- the secondary flow convection terms.

The combination of the first two sources gives rise to the
"potential flow" effect, which is to be observed in the zero

Dean number solution (see, for instance, figure 3): outside
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the sidewall boundary layers the main velocity distribution

is almost similar to the ome in a potential vortex (u propor-
tional to %; see also De Vriend, 1973a & 1973b).

The "inversion" of this main velocity distribution to an outward
skewed distribution with the velocity maximum at some distance
below the surface must be attributed to convection of main flow
momentum by the secondary flow. It will be analysed hereafter,
both mathematically (what is the influence of the various terms
in the momentum equatioms?) and physically (what is the physical
explanation of the observed phenomena?). Thereby a distinction
will be made between low, intermediate and high Dean number

flow, each of which allows for a specific mathematical approach.

3.6.1. Low Dean number flow

For low Dean numbers the influence of convection can be considered
as a perturbation of the zero Dean number solution (cf. Dean
(1928a) and Adler (1934) for circular pipes, Ito (1951), Cuming
(1952) and De Vriend (1973a & 1973b) for rectangular channels).
Accordingly, the dependent variables in the system of equations
describing the flow can be written as power series expansions

2 .
of De”. So, for instance,

u = z DeZkuk H 1 = Z D22k1 3 Y o= z Dekak (3.35)
k=0 =0 k=0

If lateral diffusion is neglected (far from the sidewalls),
the first order perturbation function uy of the zero Dean
number solution u, can be written as (De Vriend, 1978a; see
also De Vriend, 1973a)

1 . (3.36)
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, the overbars denoting depth-averaged values. The functions
f1 and f2, which are polynomials in z, are represented in
figure 8a-b.

The two constituents of G;'are negative close to the inner
wall and positive close to the outer wall, whereas they
almost vanish in the central region.

Hence the depth-averaged velocity will be reduced near the
inner wall and increased near the outer wall. Although this
influence is of a local kind*), it agrees qualitatively with
the results of the shallow channel computations by the
complete model (figure 3).

The second and the third term in expression (3.37) for ui
indicate how the vertical distribution of u is influenced
by convection due to the radial and the vertical velocity
component. As long as %~§E-(rﬁo) is positive, the radial
velocity component causes a flattening of the main velocity
profile, whereas a positive vertical velocity gives rise to

more oblique profiles of u, but to a much lower extent.

A physical interpretation of these results can be found by
considering the main flow isovels and the streamlines of
the secondary flow for the zero Dean number solution, as

shown in figure 8c for the inner wall region. Everywhere in

Even if lateral diffusion is taken into account, this local

character remains (De Vriend, 1973a & 1973b).

(3.37)

(3.38)
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this region u. appears to increase along the streamlines

of the secondgry flow.

So in any point the longitudinal momentum of the fluid
conveyed by the secondary flow is smaller than the. longitudinal
momentum in the undisturbed flow.

As a consequence, an overall decrease of the main velocity
with respect to u, occurs here. The opposite holds for the
outer wall region, where the fluid conveyed by the secondary
flow has a momentum surplus and an overall increase of the
main velocity occurs.

The explanation for the vertical redistribution of the velocity
is essentially the same, but requires a more quantitative

reasoning. The inclimations oy and o of the isovels and the

streamlines in figure 8c follow from

du, du Bwo Bwo
tan a; = - e — and tan a_ = - 38 30 (3.39)

Hence it can easily be derived that

Ju Jdu du, 2 du, 2
0 0 .1/2 2\/ 0 0% . .
s 3 * W T vy * Wy (SE~) + (SZ—J sln(as ai) (3.40)

u.v

* ) :
So if the term € is neglected ), the magnitude of the

convection terms in the longitudinal momentum equation is
proportional to the local strength of the secondary flow,
the local main velocity gradient and the sine of the angle
of intersection between the main flow isovels and the

gsecondary flow streamlines. According to figure 8, the

1f this term, originating from the divergence of the coordinate
system, is taken into account, the same reasoning holds for

lines of constant ru rather than for the isovels.
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streamlines intersect the isovels at much smaller angles near
the bottom than near the surface and also the secondary flow
intensity is somewhat smaller in the lower parts of the cross-
section. In the wall region the main velocity gradient is of

the same order of magnitude throughout the vertical, so that

the effect of the secondary flow will be relatively stronger

in the upper part of the vertical. Consequently, the shape

of the main velocity profile becomes flatter near the surface*).
The redistribution of the main velocity works out as a deforma-
tion of the main flow isovels in the direction of the secondary
flow. Essentially the same phenomenon is found in turbulent
flow in straight non-circular conduits, where a setondary flow
occurs, as well. The deformation of the main flow isovels can
be explained in the same way then (see, for instance: Prandtl, 1952,

Schlichting, 1951, and Reynolds, 1974).

3.6.2. Intermediate Dean number flow

At small Dean numbers only small and local perturbations of

the zero Dean number velocity occur, as was shown in the fore-
going. As the Dean number increases, however, the perturbations
grow stronger and the lateral interaction grows more and more
important, until the influence of convection is felt throughout
the cross—-section, whether this is shallow or not.

This difference between low and intermediate Dean number flow is
reflected in the mathematical approach: for small De pertur-
bation techniques are applicable, but for higher De these
methods fail (see also chapter 4). The similarity of the velo-
city profiles, however, which is stropgly present in low Dean
number flow, persists up to much higher Dean numbers, especially
if the channel is shallow. This is readily shown by figure 9,

where G/Gl and u/u appear to be hardly dependent on £ and £,

£=0

If the convection terms would be constant along the vertical, the

perturbation of u, would be parabolic, so that the shape of the main

0
velocity profile would not be effected.
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respectively, even at Dean numbers giving rise to velocity
redistributions throughout the cross-section ).
When adopting similarity approximations for the main and the

secondary flow,

u(g,z) = u(g) £(r)  and  ¥(E,2) = (&) g(x) (3.41)

, the horizontal and the vertical redistributions of u are

described by

= -
De g~%z~{i (%%,+ £+l %%} -
2~ - 2
13 £ Ju " = - 3f
ek — o = S U - U _ (3.42)
T agz ) 3c | z=1
and
Y U, ez 3 ., udb  3f |
De™ { Ge*rrWa My s
v, - azf 3 1 dru
T + u 5;2 + 55'(;‘55"9 f (3.43)

, respectively. For given U, f and g**), 4 and 1 can be
solved from (3.42) and the integral conditon of continuity
(3.16). Figure 10 shows the approximation of u obtained in
this way to be good, except for the outer wall region at
relatively high De. The same holds for equation 3.43), from

which f can be solved if U, u and g are given**) (see figure 11).

Only at relatively high De considerable deviations occur

locally near the outer wall.

To be taken from the solution obtained for the same case by

the complete model (see par. 3.5).
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Hence it is concluded that equations (3.42) and (3.43) can

. . . . . . %
be used for the analysis of the main velocity redistribution ).

In the depth-averaged longitudinal momentum equation (3.42)
the following (groups of) terms can be distinguished in

addition to the longitudinal slope term:

- the radial convection terms De? g %%» % (%% + % u)
- . . 2 " 3f udy
the vertical convection term De g 30 T oF
%% e on 2
- the lateral diffusion terms sr, e B G
Bg2 r 3§ rZ

_t ,___
he bed shear stress term u 50| z=-1

The influence of each of these terms or groups of terms on u
is shown in figure 12, which gives rise to the following
observations (see also De Vriend, 1978a):
if the vertical comvection term is neglected, the depth-
averaged velocity distribution hardly differs from its zero
Dean number limit (see figure 12a);
if the radial convection terms are neglected, lateral interac-
tion is almost absent, especially in the central region (see
figure 12¢);
the lateral influencing due to the radial convection terms

is exclusively outward (figure 12c);

Introducing parts of the complete solution into the diffusion
terms is not sufficient to make the equation represent the
essential features of the velocity redistribution; the correct
representation of these features is due to the convection terms,

as becomes evident if they are omitted.
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neglecting the lateral diffusion terms away from the sidewalls
has hardly any influence on u (see figure 12a);

. the direct influence of the boundary conditions at the side~
walls (full-slip or no~slip) is restricted to the sidewall
regions (see figure 12b);

. neglecting the bed shear stress gives rise to much less
uniform and at higher De much stronglier skewed distributions
of u (see figure 12a).

Hence it is concluded that the vertical convection term is the

main cause of the local decrease of u near the inner wall and the

local increase near the outer wall, whereas radial convection
provides for an outward lateral interaction. Consequently, the
region influenced by the local velocity reduction near the inner
wall is extended outwards until it covers the greater part of

the cross—section and the region influenced by the local velocity

increase near the outer wall is compressed against the wall (see

figures 12a and b, the influence of neglecting the radial convec-
tion terms). If the bed shear stress were absent, this combined
effect of vertical and radial convection would lead to an almost

linear increase of u with £ in the central region (see Appendix A).

The bed shear stress, however, tends to attenuate the non-

uniformities in u and consequently the distribution of u is

deflected towards an almost horizontal asymptote, as is shown

in Appendix A.

In equation (3.43) for the vertical distribution of the main

velocity the (groups of) terms to be distinguished in addition to

the longitudinal slope term are:

- the radial convection terms - De —l’i(a-11 + =) 2-*q-f
r 3¢ 3T
_ ) . u 3y 3f
the vertical convection terms De Y3 g 3
23 £ du 2
- the lateral diffusion terms Ea+ 8- 50 f
r 3¢ 2
13 T
- 32
- the vertical diffusion term u ——%

R
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The analysis of the influence of each of these terms or groups
of terms (shown in figure 13) leads to the following conclusions
(see De Vriend, 1978a):
near the inner wall the vertical convection term causes a
decrease of f near the bottom and an increase near the surface,
whereas near the outer wall the reverse occurs;

. the radial convection term gives rise to a (considerably stronger)
increase of f near the bottom and a decrease near the surface
in the imner wall region, whereas it causes the reverse effect
in the outer wall region;
in the central region of the cross—section (i.e. away from the
sidewalls) the influence of the vertical convection term is
small, but the radial convection term is quite important; it
gives rise to similar deformations of f as in the inner wall
region;
the influence of lateral diffusion and of the no-slip condi-

tions at the sidewalls on f is rather small,

The physical explanation of the local deformations of the
velocity distribution near the sidewalls is the same as for low
‘Dean number flow (section 3.6.1). Away from the sidewalls the
vertical velocities are small and the convective transport of
momentum is mainly horizontal, outward in the upper half of the
vertical and inward in the lower half. The net outward transport
of momentum, combined with the bottom shear stress as a damping
factor, causes a retarded outward expansion of the low velocity
region near the inner wall until the greater part of the cross-—
section in influenced.

Near the outer wall, however, the net outward momentum transport
compresses the local velocity peak against the wall, where it is
partly damped by viscous forces. As a consequence of these
effects, the main velocity distribution tends to be skewed
outwards in the greater part of the cross-section. The local
horizontal convection combined with this outward skewed velocity
distribution gives rise to the flattening of the main velocity

profile in a vertical, the fluid conveyed from further inwards
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causing a momentum deficit in the upper half of the vertical
and the fluid conveyed from further outwards causing a surplus

in the lower half.

3.6.3. High Dean number flow

As was stated in par. 3.4., the flow at higher (effective)
Dean numbers (De > 60) is not quite relevant to the present
investigations. Therefore reference is made here to the the
theoretical and experimental work reported in the literature
(see also De Vriend, 1978a): Joseph et al. (1975) and Cheng
et al. (1976) for the mathematical prediction of flow at
rather high Dean numbers; Smith (1976) for an theoretical
discussion on the limit case of very high Dean numbers, where
the main velocity gradients and the secondary flow are concen-
trated in rather thin layers along the fixed walls and an
inviscid core occurs; Mori et al. (1971) for experimental

evidence.

3.7. Reverse secondary circulation

A most striking phenomenon to be observed at the end of the
intermediate Dean number range (De = 50 = 60) is the abrupt
transition of the single-vortex pattern of the secondary flow
into a double-vortex pattern: a second, counterrotating

vortex develops near the surface in the outer wall region. For
square pipes this phenomenon can be shown by the present
mathematical model and it was also reported by Cheng et al.
(1970), Joseph et al. (1975) and Cheng et al. (1976). The
latter showed the second vortex to occur at sufficiently high
Dean numbers in shallow channels, as well. Since a similar
reverse circulation has often been observed in experiments on
turbulent flow in curved channels (Yen, 1965; Rao, 1975;
Choudhary et al., 1977; De Vriend et al., 1977; De Vriend,
1979b), it is worthwhile to try and find at least a qualitative

explanation of this phenomenon.

T
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This explanation can be found in the mutual influencing of the
main and the secondary flow. At sufficiently high Dean numbers
the secondary flow convection gives rise to negative vertical
derivatives of the main velocity near the surface (cf. par. 3.5).
Consequently, the source term in the secondary flow equation,

3 2 . .
—— (u”), becomes negative there and hence the stream function of

3

tie secondary flow tends to become negative there. The corresponding
reverse secondary circulation, however, tends to destroy itself as
long as the main velocity shows an outward increase: the momentum
surplus caused by the fluid conveyed from further outwards tends
to make the velocity derivative and the source term in the
secondary flow equation positive, again. In the outer wall region,
however, the main velocity sharply decreases towards the outer wall.
Hence the reverse circulation tends to intensify itself, its
convective effect giving rise to a further reduction of the main
velocity at the surface. This also explains the abruptness of the
transition from the single-vortex to the double-vortex pattern:
once the reverse circulation comes into existence near the outer
wall, it intensifies itself as far as viscous forces permit.

The foregoing suggests the development of the additional vortex to
be a matter of hydrodynamic instability. On closer investigation,
the underlying mechanism appears to be essentially the same as

for the so-called Gortler—-vortices in the boundary layer along

a concave wall (Gortler, 1940; see also Schlichting, 1951), for
the instability of laminar flow in an infinitely deep narrow
curved channel (Dean, 1928b) and for the so~called Taylor-
vortices between two concentric rotating cylinders (Taylor,

1923; see also Schlichting, 1951). Each of these phenomena is
characterized by a dimensionless number of the same nature

as the Dean number.

3.8. Discussion

In the foregoing it has been shown that the secondary circulation
in curved channel flow gives rise to a redistribution of the main

velocity and hence to a redistribution and an overall increase of
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the boundary shear stress. In rectangular channels the inner wall
region appeared to play a most important part in this redistri-
bution process: the transverse transport of momentum by the
secondary flow gives rise to a local reduction of the main velo-
city there, which may influence the main velocity distribution in
the greater part of the cross—section, especially if the Dean
number is not small and the bend is long.

Regarding this influence of the inner wall, a mathematical model
of the flow in curved rectangular channels should account for the
sidewall regions, even if the channel is shallow (cf. par. 4.3).
Therefore, in case of shallow rectangular channels, computations
limited to the central region (Van Bendegom, 1947; Engelund, 1974;
De Vriend, 1976 & 1977; Falcdn, 1979) are doomed to fail.

In case of shallow channels with gently sloping banks, however, the
sidewalls, if present at all, are much less important. Instead of
being caused by the lateral diffusion in combination with the no-
slip conditions at the sidewalls, the radial variations of the
main velocity are mainly due to the transverse variation of the
depth of flow then and consequently they are spread over a much
wider region. Hence the vertical velocity component, which is the
main cause of the velocity reduction near the inner wall in
rectangular channels, is not concentrated in a pronounced peak
near the sidewalls, but is spread out more evenly. This provides
the possibility to make flow computations without accounting

for sidewall regions er lateral diffusion (Kalkwijk et al.,

1980; see also chapter 8).

3.9. Summary of conclusions

The conélusions to be drawn from the present chapter can be sum—
marized in three groups, concerning the flow pattern, the mechanism
of main velocity redistribution and the mathematical description of

the flow, respectively.

1. The flow pattern.

Fully-developed laminar flow in curved (rectangular) channel is
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strongly dependent on the Dean number Ree, characterizing the im-
portance of the convective effect of the secondary flow on the main
flow. For De increasing from 0 to about 60,

- the main velocity maximum shifts from the inner to the outer wall;

- the vertical distribution of the main velocity becomes flatter and

for higher De the maximum even lies below the surface;

~ the centre of circulation of the secondary flow gradually moves downj;

-~ the centre of circulation of the secondary flow moves outwards up to
a certain Dean number and then shifts inwards again;

- the secondary flow intensity increases, reaches a maximum at about
the same Dean number (depending on the channel aspect ratio) and
decreases again;

- on approaching the end of the Dean number range considered (De >
about 50), suddenly a counterrotating secondary circulation develops
near the surface in the ocuter bend;

- the longitudinal wall shear stress increases, especially in the outer
bend;

~ the longitudinal pressure gradient strongly increases in comparison

with the one in the equivalent straight channel flow;

- the transverse pressure gradient is closely proportional to Dez,

irrespective of the channel aspect ratio;

- the shape of the transverse pressure distribution changes from
concave to convex;

- the vertical distribution of the pressure remains closely
hydrostatic;

- the total flow energy concentrates near the outer wall.

Starting from the deformations of the main velocity distribution,

all other phenomena can be explained satisfactorily.

2. The mechanism of main velocity distribution.

The transverse redistribution of the main velocity for De increasing
from zero on is due to the convective transport of main flow momentum
by the secundary flow. For shallow rectangular channels, the mechanism
of this convective redistribution can be summarized as follows:

-~ near the inner wall, the momentum of the undisturbed main flow in-
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creases along the streamlines of the secondary flow; convection of
momentum along these streamlines gives rise to an overall reduction
of u, which is strongest in the upper part of the cross—sectionj
consequently, u is reduced throughout the inner wall region and

the vertical distribution function u/u grows smaller in the upper
half and larger in the lower half of the vertical;

- near the outer wall, the momentum of the undisturbed main flow
decreases along the streamlines of the secondary flow, so that
convection causes an increase of u and a skewing of the vertical
distribution function u/uj

~ in the central part of the cross-section, the secondary flow, and
hence the convective transport of main flow momentum, is almost
horizontal, outward in the upper half of the vertical and inward
in the lower half; in combination with the bottom shear stress as
a damping factor, the resulting net outward transport of momentum
causes a retarded outward expansion of the low velocity region
near the inner wall and a compression of the high velocity region
near the outer wall; as a consequence, the depth-averaged main
velocity distribution tends to be skewed outwards and the vertical
profile of the main velocity tends to be flattened in the greater
part of the cross-—section.

For De=0, the main velocity distribution is skewed inwards, due to the

'potential flow effect'. At low Dean numbers, the effects of secondary

flow convection are small and they are confined to the sidewall

regions. At intermediate Dean numbers, the effects of secondary

flow convection in the sidewall regions grow stronger and there is a

horizontal interaction that extends these effects over the whole

cross—section. In high Dean number flow, a strong mutual interaction
between the main and the secondary flow occurs, giving rise to

"hydrodynamic instability' in the form of a reverse secondary circulation

near the outer wall.

3. The mathematical description of the flow.
The investigations of the complete Navier—Stokes model describing

fully-developed steady laminar flow in curved rectangular ducts
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have led to the following general conclusions:

~ though maybe not the most efficient and powerful one, the pre-
sent solution procedure for the complete Navier-Stokes equationms,
solving a fourth-order equation for the stream function of the
secondary flow, yields good results at low and intermediate Dean
numbers; for Dean numbers higher than about 60, as the reverse
secondary circulation develops near the outer wall, the iterative

solution procedure becomes ill-convergent; -

~ the group of terms representing the transverse inertia of the
secondary flow is the only one that can be omitted from the
system of equations without introducing important errors;

- the lateral diffusion terms are of minor importance in the central
part of a shallow cross—section, but in the sidewall regions they
cannot be disregarded;

~ the secondary flow convection terms in the main flow equation
cannot be disregarded, not even in a first approximation, unless
the Dean number is very small; in a shallow channel, the vertical
convection term causes mainly local deformations of the main velo-
city distribution, whereas the radial convection term is mainly
responsible for lateral interaction;

-~ the bottom shear stress tends to make the transverse distribution
of u more uniform; hence it attenuates the outwards skewing effect
of secondary flow convection.

Further details on the effects of the various terms in the main flow

equation are summarized in the following scheme.
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region of the cross-section

inner wall

central outer wall

u i

u f u f

unimportant 1i}

radial convection

vertical convection 4;}

T

. . . viscous retar—-{visc. viscous
vertical diffusion
damping dation|damp. damping
. . . viscous . viscous
radial diffusion unimportant
damping damping
Legenda: {;} important decrease slight decrease

important increase

important skewing

important flattening

outward skewing

Tty e

slight increase

slight flattening

, slight skewing
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4, Simplified computation methods for shallow channels

4,1, Relevance and approach

Even in the relatively simple case of steady fully-developed
laminar curved flow the solution of the complete Navier—Stokes
equations requires a considerable computational effort. In the
mathematical model of the flow and the bed topography in curved
alluvial rivers, however, the much more complicated problem of
developing turbulent flow has to be solved once in everey time
step made in the computation of the bottom configuration (see
chapter 1). Hence fully three-dimensional flow computations
would give rise to unacceptably high computer costs, so that
considerable simplifications of the mathematical system are
needed. The literature provides little information at this
point. On the one hand there is a considerable amount of recent
literature on the solution of the complete or almost~complete
system of equations (fully-developed laminar flow: see also
chapter 3: developing laminar flow: Patankar et al. (1974),
Humphrey et al. (1977), Ghia et al. (1977); developing tur-
bulent flow: Patankar et al., (1975), Pratap (1975), Pratap et
al. (1975), Leschziner et al. (1978 & 1979)), on the other hand
there is a long series of publications in which quite elementary
perturbation techniques are applied /laminar flow: Boussinesg
(1868), Tean (1928), Ito (1951), De Vriend (1973a & 1973b) and
many others; turbulent flow: Ananyan (1956), Rozovskii (1961),
Engelund (1964), Ikeda (1975), De Vriend (1976 & 1977), Falcén
(1979) and many others). The wide range of possible simplifica-
tions between these two extremes, however, is paid hardly any
attention in the literature. Therefore the most important of
these simplifications will be investigated here.

A considerable reduction of computer time would be attained if
it would be possible to simplify the calculations in a cross-
section without loosing too much accuracy. Therefore the
simplification of the mathematical model of fully-developed
laminar flow (see chapter 3) will be studied first, with the

complete model as a reference. Two types of simplifications
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will be considered in this respect, viz. omitting unimportant
terms from the differential equations and applying approximative
computation methods, such as successive approximations and

similarity solutionms.

4.2, Simplification of the differential equations

4.2.1, Simplification of the longitudinal momentum equation

As suggested already by par. 3.6, none of the (groups of) terms
distinguished in the longitudinal momentum equation is negligible
throughout the cross—section.

- The vertical convection term plays a most important part near
the sidewalls and especially its effect near the inner wall
is indispensable for a proper description of the flow, even
in the central region of the cross-section. If the cross-
section is rectangular, the vertical convection term in the
central region is negligible, but neglecting this term is
not quite profitable since it means hardly a simplification
of the mathematical problem.

In addition, vertical convection is important where consi-
derable vertical velocities occur and in the final model,
dealing with a more or less arbitrary cross—sectional shape,
these vertical velocities can be considerable in any part of
the cross—section.

- The radial convection terms can be neglected neither near the
sidewalls, where they have a local effect similar to the one
of vertical convection, nor in the central region, where they
give rise to a most important lateral interaction.

- The vertical diffusion term is indispensable throughout the
cross—section.

- The lateral diffusion terms are only important near the side-
walls and even there the role is limited to damping sharp radial
velocity variations and matching the velocity distribution with
the no-slip conditions at the walls. This relative unimportance
of lateral diffusion is readily illustrated by replacing the

no-slip conditions at the sidewalls by full-slip conditions
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(see figure 12b): the velocities near the sidewalls are

influenced considerably, especially at higher Dean numbers,

but the shape of the transverse velocity distribution away

from the walls remains almost the same. This suggests that

there must be possibilities for simplifications in the

lateral diffusion terms, especially when bearing in mind that

a

detailed prediction of the flow close to a vertical side-

wall is not likely to be quite important in the mathematical

model to be developed.
On the other hand it should be noted that simplifications

are only profitable if the second-order radial derivatives

. . . ¥
can be eliminated from the equation ).

If the lateral diffusion terms are simply neglected, however,

ddditional measures should be taken in order to prevent the

occurrence of spurious positive or negative velocity peaks

and steep radial velocity gradients (cf. figure 12b; see also

De Vriend, 1978a). Besides, the no-slip conditions at the

sidewalls should be dropped then, as well, and it is not clear

what lateral condition should be used in combination with the

remaining equation (which is first-order in £), nor where this

condition should be imposed. Therefore the possitility of

omitting the lateral diffusion terms is rejected here.

It should be noted that many terms due to the curvate of the

coordinate system, i.e. terms with %-, can be neglected. As these

terms are always of a lower order than the leading terms of the

same type, however, this neglect is hardly profitable.

4.2,

Two

for

The

for

2. Simplification of the stream function equation of the

secondary flow

drastic simplifications of the stream function equation (3.24)

the secondary flow will be investigated, viz. neglecting the

depth-averaged equation becomes first—order then and allows

much simpler computation methods, especially in case of deve-

loping flow (De Vriend, 1976 & 1977, Kalkwijk et al. , 1980).
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convection terms and neglecting all radial derivatives in the
diffusion terms.

Neglecting the non-linear convection terms greatly reduces the
computational work, since the solving operator of the remaining
equation becomes independent of the intermediate results of the
iteration procedure then. Figure 15 gives an impression of the
influence of the convection terms at a rather high Dean number
(De = 50). As far as the main velocity distribution is concerned,
this influence is small and even the secondary flow pattern is
hardly influenced, except for the outer wall region, where Y
becomes somewhat higher. Hence it is concluded that the convec—
tion texms in the stream function equation of the secondary

flow are negligible, indeed.

Another simplification of the stream function equation that
would save a great deal of computer time is the neglect of all
radial derivatives in the diffusion terms. In combination with
the neglect of the convection terms, this would reduce the stream

. . *
function equation to’ )

4 2
3L
Imposing the boundary conditions (3.18) and 3.20), the solution of

this equation can be written as

r c
3
b= s Sdr Sutar- O rar-2i)x
R

4 C 0
«  sa sa sla - 3?5 (4.2)
-1 -1 -1 -1

which can easily be evaluated numerically. If u=0 at the

The expressions for the secondary flow commonly used in the
literature (Boussinesq (1868), Rozovskii (1961) and many others)

are based on essentially the same simplifications.
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sidewalls, this solution can be shown to satisfy both the
condition of impermeability (¢ = 0) and the no-slip condition
(%%—= 0) at these walls.

In the central region of the cross-section the simplification of
the stream function equation to (4.1) seems to be allowable, but
for the sidewall regions this is not quite evident. Therefore
expression (4.2) has been evaluated for the whole cross—section
on the basis of a main velocity distribution obtained by the
complete model. At higher Dean numbers, the resulting stream
function shows considerable deviations from the solution of the
complete equation, especially in the outer wall region (see
figure 16 for De = 50). Besides, replacing equation (3.24) in the
mathematical model by its truncated version (4.1) gives rise to
ill-convergence of the iterative solution procedure at Dean
numbers at which the solution of the complete model is still
convergent. Hence it is concluded that even in the stream function
equation of the secondary flow the lateral diffusion terms should
be treated with caution and cannot simply by neglected.

As to the terms due to the divergence of the coordinate system
the same can be stated as in par. 4.2.1.: neglecting these terms

is hardly profitable as they are of lower order than the leading

terms of the same type.

4.3, Successive approximation methods

In the literature on flow in river bends successive approximation
methods are widely used to solve the often strongly simplified
governing differential equations (cf. par. 4.1). These methods are
based on the expansion of each depedent variable in the mathematical
system in a power series of a small parameter §. Starting from the
solution for § = 0, the successive terms of these series are deter-
mined one by one, making use of the knowledge of the foregoing

ones (Van Dyke, 1964; Nayfeh, 1973). In practice the series
expansions, with the curvature ratio or the (effective) Dean number
as a perturbation parameter, are usually cut off after one of two
non—-zero terms.

Without pretending generality, table 4.1 gives some of the most

important examples of the use of perturbation techniques for the
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mathematical description of flow in shallow channel bends*)

(see also par. 4.1).

flow | develop~ | vali~ | number of non-zero terms
Author type | ment dity
main flow sec. flow
Boussinesq (1868) L F-D C 1 1
Ananyan (1965) L/T F-D Cs 2 1
Rozovskii (1961) L/T F-D c/s 1/2 1
De Vriend (1973a & 1973b) L F-D cs/c/s 2 1
De Vriend (1976 & 1977) T D C 2 1

(L = laminar; T = turbulent; F-D = fully-developed; D = developing;

C = central region; S = sidewall region; €S = whole cross-section).
Table 4.1 Applications of perturbation methods in curved channel flow

4.3.1. Successive approximation in the central region of a

shallow channel

As was stated before, the commonly applied simplified computa-
tion method for the undisturbed main velocity and the secondary
flow in the central region of very shallow curved channels can
be considered as a strongly truncated perturbation method. Tur-
bulent flow versions of this mehtod, widely used in river
engineering practice, have been published in a great variety
(see, for instance; Van Bendegom, 1947; Rozovskii, 1961; Yen,
1965; Engelund, 1974; Ikeda, 1975; De Vriend, 1976 & 1977;
Falcdn, 1979). Therefore the applicability of the laminar flow
counterpart of this method (see also Boussinesq, 1868 and De

Vriend, 1973a & 1973b) will be subject to a closer investigation.

Except for the oldest one (Boussinesp, 1868), the numerous
publications with only the basic approximations for the main

velocity and the secondary flow are not mentioned in this table.




51

In addition to a seldomly mentioned Reynolds number limitation
(the effective Reynolds number is, often implicitly, supposed

to be of the order O(EO)), the basic assumption of these models
is that the influence of the sidewalls is restricted to a
region close to these walls. Hence in shallow channels there is
a central region, where the horizontal derivatives of the main
velocity and of the gtream function of the secondary flow are
much smaller than the vertical ones. Accordingly, these radial
derivatives can be normalized by RC instead of d, so that the

normalized longitudinal momentum equation becomes

22 (13 2w, 1 130w
eRe” (- T Gt T W T e

2 2

1 3 u 2 ,3u 1 3u u
Tttt ot T D (4.3)
3z or r

and the integral condition of continuity can be written as

1+B/2R 0
7 ©dr / udz = B/R (4.4)
1-B/2R -1 ¢

If secondary flow inertia is neglected, the normalized stream

function equation becomes

4
T VRS T
3 3rar Irsg
4 3 2
4 3% 223y, 3 v _3 3y
te (3 377 e A =) (4.3)
x T r~ 3r r

For Re2 = 0(50), this system can be solved by successive
. . . 2 . . .
approximations with € as a perturbation parameter. This implies

that u, or rather
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* . .
u/1 ), 1 and Y are expanded in power series of ¢

[
]

2% - 2k S 2k
uﬁ 3 1= z ey, 3 Y o= z € wk (4.6)
k=0 k=0 k=

[
i

i t~3 8
™

If these expansions are formally substituted into (4.3) through

(4.5), these equations can be rewritten to the form

Eq = z EZREqk =0 4.7)

k=0
in which the expressions Eqk can contain ui, 1 and wi (i = 0,1,...,k).
Equation (4.7) must hold for a continuous range of 62, which
implies that the expression Eqk must be equal to zero. This yields
a series of equations

= 4.8
Eqk 0 ( )
from which the k-th order variables can be solved.
Thus the zero order approximation of the present system becomes
azu(') 1 1+B/28,, 0 5 3411;0 ) dut’

T — ' TR e * =
; 5 7 J dr [ 1940 dzg 53 gzz— 9 5T (4.9)
E 1-B/2R -1 ¢
c
With the appropriate boundary conditions this yields
o 1_22. .3 (in 1+B/2Rc)_1.
0 2r ? 0 Rc 1-B/2Rc ’
2
o = Yo /- 70+ 113-5¢ 4.10)
0 r2 840 :

Equation (4.3) can be rewritten as an equation for u’, in which the
source term % is independent of 1. Thus the three variables u', 1

and ¥ can be solved one by one from separate equation.
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Similarly, the higher order systems (for k = 1,2,3.,..) become

L
ii:-(.?_z_g.-}-l?.‘i—y_) +
2 2 r 3r P
3z ar r k~1
213 du,uy 13y 3y
*RT o Gt Y T ar ac}k_l
1+B/2RC 0 1+B/2Rc 0 K
1 = - [
I dr f 1ku0dc = / dr [ .lek—i ul dzg
1-B/2R -1 1-B/2R -1
[ [}
4
3ty 4 1 a3
"“ZE'= N %Z (uz)k vt - o ° Lbz) *
14 7oz arar” k-1
L2, 3 23 oy
T r 3r3 r2 ar2 r3 or k-2
(k>1)

1

For successively increasing Xk, the quantities Ups Yy and ¥
can be solved from these systems with the relevant boundary

conditions. Substitution of the results into (4.6) yields

successive approximations of u, 1 and ¥, respectively.

Neither the zero order approximation (4.10), nor any higher
order approximation of the solution of (4.3) through (4.5)
satisfies the boundary conditions at the sidewalls, since the
radial derivatives in the system are at least an order ¢
smaller than the leading terms and occur only as known source
terms in the higher order systems (4.11) through (4.13). This
incompatibility with the boundary conditions is consistent

with the assumption that the sidewalls have no influence on

(4.11)

(4.12)

(4.13)

the flow in the central region. The only way to satisfy the side-

wall conditions is to determine a local solution for the sidewall

regions (Rozovskii, 1961; De Vriend, 1973a & 1973b).
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The applicability of the above method to the central region

of a shallow channel was investigated by solving the system
(4.11)-(4.12) with fixed secondary flow (w=¢o) for a shallow
channel (d/B = 0.1; e = 0.04) and Reynolds numbers up to 50
(i.e. Dean numbers up to 10). The perturbation was carried out
on computer, up to the tenth-order approximation.

As is shown in figure 17, the basic solution (4.10) agrees well
with the zero Dean number solution of the complete model, espe-
cially if % is replaced by the "exact" value of 1. According

to figure 18a the procedure converges only for small Dean
numbers (at the inner wall the depth-averaged main velocity
"explodes" for De as small as 7.5). Besides, the main velocity
distribution obtained by this method shows no trace of the out-—
ward skewing tendency in the solution of the comple system
(figure 18b), by lack of the local velocity reduction near the
inner wall (cf. par. 3.6). On the contrary, as a consequence of
the inward skewed basic velocity distribution (giving rise to
negative radial derivatives and negative vertical velocities), u
tends to be skewed further inwards as De increases.

Hence it must be concluded that successive approximations of
this type are only applicable at very low Dean numbers. As soon
as secondary flow convection becomes important, however, they are
essentially wrong. This conclusion stands when local solutions
near the sidewalls are included, even if the method of matched
asymptotic expansions is used (De Vriend, 1973a & 1973b): the
solution in the central region is fully-determined in itself, so

it cannot be influenced by these local solutions.

4.3.2. Low Dean number perturbations

Succegsive approximations of the solution in the whole cross-
section with De (or rather: Dez) as a perturbation parameter are
widely applied to pipe flow problems (Dean, 1928; Adler, 1934;

Ito, 1951; Cuming, 1952). The successive ;approximation of the
solution for the whole cross-section of a shallow channel presented
by De Vriend (1973a & 1973b) can be rewritten as a set of low Dean
number perturbation series that is applicable to less shallow

channels, as well.
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Since the cross—section is treated as a whole, the influence of
convection could be properly represented. Hence it is worthwhile

to investigate to what extent (read: Dean number) this perturbation
method is applicable here.

For simplicity, the secondary flow is considered as being known,

so that the system to be solved consists of the longitudinal momen-
tum equation (3.13) and the integral condition of continuity (3.16).

Introducing the perturbation series

)2, 2,
=- 1 (4.15)
r

3z 3g r

2, .2, ,
i e e SR
aC2 ag2 r 3¢ r2
1 A
Loy Bul ey 130 3ul, (4.16)
rdg 9 T k-1 F g€ & k-1

From these equation uﬁ can be solved for successively higher k,

independently of 1. The m~th order approximation of 1 is given by

B/2d 0.
W oB s a s ] war (4.17)
-g/2a -1 &9

As an example, u was computed for the shallow channel mentioned
before (e = 0.04; %~= 0.1), with k ranging up to 10 and the imposed

secondary flow corresponding with uy-
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Fiigure 19 shows the results for gradually increasing Dean

numbers. The agreement with the results of the complete model

is far better now, even the influence of secondary flow convection
being properly represented (at De = 7.5), but convergence is just
as poor as for the central region perturbation: the series
expandion (4.14) is divergent for De > 10. This implies that low
Dean number perturbations are not applicable as a solution tech-—

nique for the present problem.

4,3.3. Depth-averaged equation derived by successive approximations

Although the successive approximation method with € or De as a
perturbation parameter fails at the Dean numbers of interest, it
could be used to derive approximations of the depth-averaged
equations (cf. De Vriend, 1976 & 1977, for turbulent flow). Accor-
ding to figures 3a and 3b, the influence of the Dean number on the
vertical distribution of the main velocity becomes important at
considerably higher values of De than the influence on the radial
distribution*). Hence a low Dean number perturbation is likely

to be applicable to the vertical distribution of u up to Dean
numbers higher than 10, at least if the depth-averaged main
velocity distribution is appropriately represented. This implies
that the depth~averaged longitudinal momentum equation should
account for the secondary flow convection and should include the
sidewall regions.

The procedure to be followed when deriving the depth-averaged
system can be outlined as follows. According to par. 3.6.2,

the similarity approximation (3.41) holds good for u and ¥, so

that the low Dean number limit can be approximated by

This accords with several turbulent flow experiments in curved
shallow channels (Rozovskii, 1961; Yen, 1965; De Vriend et al.,
1977; Nouh et al., 1979), from which it was concluded that the
vertical distribution of the main velocity in a curved channel
section is approximately the same as in a straight section, even

though the radial distribution shows considerable deformationms.
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ug(E,8) = ug(8) fy(@) and  Uo(E,0) = B(8) g, (x)

The vertical distribution functions fo(;) and go(c) can be
determined far from the sidewalls, where lateral diffusion
is negligible and the system of zero-order equations reduces

to (4.9). Since ? = 1 and 5 = 1 by definition, this leads to

24

fole) = —;- (1 -? and 90(8) = 15 ’ °

-7+ 11§3 - 57)

The first-order perturbation of u, follows from (cf. equation

0
4.11)

aC2 852 r 3E r2 1 r r 37 3L 0
.1 2% ™
r 3 3L

Now v is approximated by

u (,2) = ;1,0(5) Fol@) + Gl,l(g) fl,l(c) + 51’2(5) fl’z(c)

, in which the three components represent the contributions
of the longitudinal slope term, the radial convection term
and the vertical convection term, respectively. The functions

f1 1 and fl , are solved from the systems
s 3

2 . '
"ha . M with f! = 0; Mal 0
BCZ 0 3z 1,1jz=-1 > ¥ =0

and fy 5= 11/ ,1

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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22 g1 of af!
L2 o =% witn =0; —22
. 90 3¢ 1,2[t=—1 = 7% BT |z=0

and f) , = fi’zlf?:é (4.23)

, derived from (4.20) in the central region, the boundary
conditions at the bottom and the surface and the definitions
of fl,l and f&,Z' The solutions of (4.22) and (4.23) are
polyromials in Z.

Making use of the information on the vertical distribution
functions provided by (4.19) and the solutions of (4.22) and
(4.23), the longitudinal momentum equation (3.13) can be

averaged over the depth of flow to yield

2- - 2 - -
u e du_ e G- - Lgope? |128 0 du, eq
2 tTap gD u=-+de [;5 Ehprswr
3E r -
wdyy 195 Lo
Fr el 5T Y1 T2 ul,ZJ (4.24)
The quantities El 1 and Gl 2 follow from (4.20), averaged over
bl I
the depth of flow:
255 35 2 - -
1,1 e 1,1 e 77, = _ 1289 du g =
T rr e T 3t v o Gr e W (4.25)
13 r
2% du 2 - -
1,2 e °™M,2 e 77y - _ 128 u 3y
322 MR G+ 98 Y, " 95 73 (4.26)

Similarly, the depth-averaged stream function of the secondary

flow becomes




3 E ) m € 240, 3"y € 240 e 3y
30 _ el 35 -8 g 225 .
3E r BE3 rZ 19 BE2 r3 19 3L
£ 2005 3 Ao (4.27)

With the appropriate boundary conditions, the system (4.24)
through (4.27) can be solved iteratively. The zero Dean

number solution could be used as a first estimate.

The procedure of solving u from the depth-averaged longitudinal
momentum equation (4.24) and the additional equations (4.25) and
(4.26) will be called semi-implicit, part of the convection

terms in (4.24) being incorporated in the solving operator and
part of them being introduced as known source terms.

As an example, this semi-implicit computation was carried out

for the same shallow channel as in the foregoing paragraphs

(d/B = 0.1; ¢ = 0.04), with the secondary flow fixed at its
zero-order approximation. According to figure 20 convergence

is far better now: even for De = 50 the procedure converges.

The agreement with the equivalent solution of the complete
system, however, becomes rather poor as De increases.

If in (4.25) and (4.26) the lateral diffusion terms are neglected,
these equations reduce to explicit expressions of Gl,l and 51’2
in terms of U and ¥. Substituting these expressions into (4.24)

yields a fully-implicit equation for u, reading

2—- . —
%5, e 8u el gy ool g2 18128 )% 35, =
NI (g *+3)us= *De” Z g 20 Gpryw
2 r
u 8y
+r35} (4.28)

As this equation is fully-implicit in u (apart from the
influence of u on U), no convergence problems are encountered

when solving it.

In spite of the partial neglect of lateral diffusion, the
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solution (4.28) for the aforementioned shallow channel with
fixed zero-order secondary flow (see figure 20) agrees better
with the solution of the complete system than the results of
the aforementioned semi-implicit procedure. Still, for

De > 20, considerable differences occur here, as well.
Convergence grows poorer if the secondary flow is correlated

to the actual depth-averaged velocity instead of being fixed

at its zero order approximation (see figure 21), but if the
procedure converges (De < 10 for the semi-implicit procedure;
De < 12.5 for the fully-implicit one), the solution agrees
better with the one of the complete system.

The conclusion to be drawn from the foregoing is that the
iterative solution of u and § from depth-averaged equations

on the basis of low Dean number approximations for the vertical
distribution function f and g are not suited for the present
purpose. Convergence is not guaranteed over a sufficiently wide
range of Dean numbers and even if the procedure converges, the
deviations from the solution of the complete system may be

unacceptably large.

4.4, Similarity solution

A logical continuation of the foregoing is to maintain the
similarity hypothesis (3.41), which has been shown to hold rather
good, but to leave the low Dean number approximations of f and g.
The alternative is to solve these functions from differential
equations to be derived from the longitudinal momentum equation
(3.13) and the stream function equation (3.24). If lateral diffu-
sion is neglected, the longitudinal momentum equation yields (cf.

equation 3.43)

2 -
3 a2 13 3
3z2 Pet G o) e=g T o0 "
2 % %u., £ = 3g o _
s (R E DL F1o= -1 (4.29)
o 9 2 }5“50 3L
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N with f' = O; .a_ﬁ = 0; f = f!/"f-"v"

g=-1 3z |z=0

and 50 indicating the vertical in which f is

(the channel axis, for instance). Similarly,

function equation with the lateral diffusion
the convection terms neglected leads to
34g' - 3f
8@4 3z
; ' A ' -0
with ¢ IC"”l 0; 3r lr=—1 0; g lC=0 0;
gt
2 ic—o "0g=yg
3T

The system (4.29) through (4.32) can be appli

iterative solution procedure in combination with the depth-

averaged system (cf. equation 3.42)

32;‘ £ EQL - (& Eit‘ ) u =
aE2 r 3% r2 dgig=-1
-1l g gg_{%_(au . %-G') + % 2%
_ B
with E"E_ B =0 and u-= E%— /7
T~ 24 -B/2
447 3- 2 - -
13 Y r BIe=0T 5 £
3 3
rly -
3t it=0 3z r=-1

detérmined
the stream

terms and

ed in an

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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with £ 3F E=+ L

=+

&

As was shown in par. 3.6.2, equation (4.29) yields satis-
factory results of f at low and intermediate Dean numbers if
G, ¥ and g resulting from the complete model are introduced
as known functions. Similarly, u is appropriately described
by (4.33) with E, f and g as known functions, so that an
iterative procedure based on (4.29) through (4.36) may be
expected to give better results than the simplified models
studied hitherto.

This iterative solution procedure was applied to the shallow
"test~channel” (e = 0.04; %-= 0.1). Figure 22a shows that
convergence is hardly a problem: when applying a damping rule

of the form

= (k)

i s ™D a W E

with o <1 ° (4.37)

, convergence can be attained up to the end of the inter-
mediate Dean number range (De < 50). According to figures
22b through e, there is a good agreement between the results
of the present system and the complete model; the influence
of secondary flow convection is appropriately represented.
Only near the sidewalls, especially near the outer wall,
considerable deviations are found, but since the sidewall
regions are of no direct interest to the final model, these
deviations are acceptable as long as their influence does
not extend to the other parts of the cross—section.

From the same point of view, even artifices suppressing the
spurious velocity peak near the outer wall are acceptable as
long as the velocity distribution further inwards is not
disturbed. Thus the applicability of the present procedure
can be extended up to the Dean numbers at which it becomes
divergent.

Regarding all this, the iterative procedure solving (4.29)

through (4.36) is thought to be suited as a simplified
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computation method for fully—developed laminar flow in shallow
channels. Though this similarity procedure is not as cheap as
the simplified computation methods treated in the foregoing
paragraphs, it still reduces computer costs considerably (say

by a factor 5 to 10), especially if the channel is very shallow.

4.5, Discussion

The foregoing paragraphs lead to the conclusion that the commonly
used simplified computation methods for curved shallow channel

flow are not applicable to rectangular channels for a sufficiently
wide range of (effective) Dean numbers, whereas the similarity
hypothesis (3.41) appears to be a suitable basis for simplification
of the mathematical model. Once again (see also par. 3.8) it should
be stressed, however, that shallow channel approximations can

apply to channels with gently sloping banks instedd of vertical
sidewalls, provided that the secondary flow convection terms are
incorporated in the longitudinal momentum equation, even in the
lowest order of approximation.

The similarity hypothesis holds good in fully-developed flow, but
this does not imply that it will do so in developing flow, as well.
Longitudinal accelerations, for instance, are known to give rise to
deformations of the velocity profile ( chlichting, 1951; De Vriend,
1976 & 1977), so that the similarity may be affected by the longi-
tudinal accelerations occurring in developing curved channel flow.
Therefore the applicability of the similarity hypothesis in developing
flow computations will have to be verified.

There is no reason why the similarity hypothesis should no longer
hold good if the flow is turbulent instead of laminar. Besides,
similarity has been shown in various experiments on turbulent curved
channel flow (Rozovskii, 1961; Yen, 1965; De Vriend et al., 1977 &
1978). So a simplification of the mathematical model on the basis

of (3.41) is likely to be possible for turbulent flow, as well.
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4.6. Summary of conclusions

The conclusions to be drawn from the investigations of simplified
computation methods for curved shallow channel flow can be out-
lined as follows:

- in curved channels with a shallow rectangular cross-section,
the sidewall regions can only be left out of consideration if
secondary flow convection is of minor importance to the main
velocity distribution, i.e. if the Dean number is very small
(De < 5); consequently, the commonly applied computation methods
for flow in river bends, on the basis of a shallow channel
approximation, cannot be used for rectangular channel flow as
soon as curvature effects are important; for the same reason,
computation methods considering the central region and the side-
wall region separately, such as the method of matched asymptotic
expansions, will fail if the Dean number is not very small;

- if the cross—section is treated as a whole, the main and the
secondary flow at Dean numbers smaller than about 10 can be
approximated by a low Dean number expansion, with the influence
of secondary flow convection excluded from the basic solution
of u; in that case, successive approximations with De2 as a
perturbation parameter can be used to solve the mathematical
system; for Dean numbers higher than 10, however, the effects
of secondary flow convection must be incorporated even in a first
approximation of the main velocity distribution;

- a compcund solution procedure, solving the set of depth-averaged
equations to be derived on the basis of low Dean number expansions
for the vertical distributions of the velocity components, yields
good results up to higher values of De (15 to 20) than complete
low Dean number expansions; still, this range is not wide enough
to cover the effective Dean number range that can be expected
in river bends (DeO up to 50);

- in shallow channels, the vertical distributions of the main and
the secondary velocity components are closely self-similar in the
larger part of each cross-section; this similarity can be used as
a basis for an iterative computational procedure, in which the

horizontal and the vertical distributions of the velocity components
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are calculated alternately; this procedure yields satisfactory
predictions of the flow in the larger part of a cross-section
(for De > 20, spurious peaks in the velocities are introduced
locally near the outer wall) and almost throughout the Dean
number range considered (only if the interaction between the
main and the secondary flow is so strong, that the aforementioned
similarity is violated, the procedure yields erroneous results).
Though these conclusions are based on laminar flow computations,
they will also apply to turbulent flow, provided that De is re-
placed by the effective Dean number De0 (based on the overall mean
turbulence viscosity instead of the molecular viscosity; see
chapter 6) and the quantitative specifications mentioned herein

are considered as global indications.
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5. Computation of developing laminar flow in curved

rectangular channels

5.1. Objective of the investigation

There are three important differences between fully-developed
laminar flow in curved rectangular channels as considered in the
foregoing and turbulent flow in shallow river bends as to be
described by the final mathematical model, viz.

streamwise variations of the flow, due to longitudinal

variations of the channel curvature,

turbulence, and

the influence of the non-rectangular cross—sectional shape

and its longitudinal variations.
In order to awoid too many complications at one time, these
extensions of the model will be introduced one by one.
A rather logical continuation of the fully-developed laminar flow
analysis is to consider developing laminar flow in shallow rectangular
channels of varying curvature. Then the flow variations due to the
longitudinal variation of the channel curvature form the only new
aspect to be dealt with. This provides the possibility to establish
a simplified computation procedure for developing flow without

complications due to turbulence or cross—sectional geometry.

5.2, Main and secondary flow

Putting a = 1 since the flow is laminar and % =1 since the channel
is rectangular, the normalized system (2.30) through (2.36) will be
simplified on the basis of the experience gained from the investiga~
tion of fully-developed.flow (chapters 3 and 4). The approximations
of the main and the secondary flow that were made there will be
transposed to the main and the secondary velocity components in
developing flow, starting from the following definition:
the horizontal velocity component in the direction of the stream-
lines of the depth-averaged flow field (called streamwise direction
hereafter) is the horizontal component of the main velocity; the
horizontal velocity component perpendicular to this streamwise

direction is the horizontal component of the secondary flow.
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This definition is based on the idea that the secondary flow
causes no net outward or inward discharge. In the limit case

of fully-developed flow, the main velocity becomes tangential

and the horizontal component of the secondary flow becomes radial.
The above definition allows for a vertical component of the main
as well as the secondary flow. If the main and secondary consti-

tuents of the velocity componehts u, v and w are defined by

2 *
u=u + € us v=v + V. wEw_tw (.1))

(the suffix m standing for main and s for secondary), then
the vertical velocity components can be defined by splitting

the equation of continuity into two parts:

1 Bum Svm . me
T " Trmtw 0 -
and

2 du v ow
eSS, S5y v+ 20 (5
r 3 et Tt Vs ar )

Averaging equation (5.2) over the depth of flow yields

Q2
[«
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1 € =
< 7 + 3 + -V = 0 (5.
and since the definition of main and secondary flow states
u
(5.
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m
and hence — =
u

The tangential component of the secondary flow must be of the
order’O(ez), sifice both the secondary flow and the deviation of
the main flow direction from the tangential direction are of

the order 0(e).

(%)
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, equation (5.2) can be elaborated to

- u v
_m__ud m 353 (m (5.6)

Obviously, the vertical component of the main velocity is
caused by streamwise variations of the vertical distribution

of the horizontal main velocity.

5.3. Simplification of the mathematical system

In the first instance, the mathematical system will be
simplified by neglecting terms that are an order O(ez) smaller
than the leading terms of the same type and terms that have
appeared negligible in fully-developed flow. In addition, the
vertical distribution of the main velocity is assumed to vary
only weakly in the streamwise direction, so that the convection
terms due to w_ can be neglected in the momentum equations.

The resulting equations read

1 Bum va e awm
5t TrVmtar =0 G-7
avS e aws
3 + Ve + T 0 (5.8)
u Bum Bum . Bum 3u e
Re (m 55 "V 3E *rV'm T Vs 3E T Vs ar Tt Vs T
_ldp, 42
3% + 7 v (5.9)
3 u va avm um avs v va v
FRe (T Fy *VmdE YT 5% T Vmag " VsE ' Vs T
U2 3
2 m 3 2.2 2 du
- g%Re B = . 9D -5 E
¢ Re 3 g T e (Tt Vv -2 S5 R (5.10)
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Two important groups of terms in these equations vanish in
fully-developed flow, viz. the terms representing the stream-
wigse inertia of the main and the secondary flow. It will be
clear that the main flow inertia should be taken into account
in bends of not very mild curvature, but the importance of
the secondary flow inertia remains to be investigated.

To that end the rate of decay of the secondary flow in a
straight channel beyond a bend is considered (see Appendix B).
If the streamline curvature is assumed to be zero from the
bend exit on, the distance needed for the secondary flow to

be reduced to 10% of its origimal strength is given by

10.1 = 0.14 Re 4 (5.12)

So for the Reynolds numbers to be considered (up to a few
hundreds; cf. chapter 3), this distance will range up to some
10-20 times the depth of flow. For shallow channels this
implies that the length of attenuation of the secondary flow
after an abrupt vanishing of its sources is of the same order
of magnitude as the channel width. The streamline curvature,
however, which is the main source of the secondary flow, also
decays over a distance of this order of magnitude. Hence the
streamwise inertia of the secondary flow cannot be disregarded
when attention is focused on the computation of the secondary
flow itself or of quantities in which it plays an important
part.

The principal purpose of the present model is the computation
of the main velocity distribution and the bottom shear stress.
As will be shown in par. 5.6, the computational procedure to
be used consists of two subsequent steps, viz. a main flow
computation step and a bottom shear stress computation step.
The neglect of the streamwise inertia of the secondary flow will

be considered for either step.
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In chapter 3 the main velocity distritution in fully-developed
flow was shown to be influenced strongly by the secondary flow.
Experiments on developing turbulent flow in curved channels,
however, have shown this influence needs a rather long distance

to establish (see De Vriend, 1976; De Vriend et al., 1977;

De Vriend, 1979b). Besides, the main velocity in a straight

reach beyond a bend needs a rather long distance to reach its
straight channel distribution (Rozovskii, 1961; De Vriend, 1978b).
As a consequence of this retarded response of the main flow,

local errors in the secondary flow near the entrance and the exit
of a bend will not give rise to important errors in the main
velocity distribution. Hence neglecting the streamwise inertia

of the secondary flow seems acceptable in the main flow computation
step.

The radial and vertical momentum equations to be solved in the

main flow computation step then become

3 0 va va va va 2 ui
ERe(—r——é—(;—+vma~g——+vsgg‘+wsgz—)_€1{e;—=
3 Ju
_ 3 2,2 2 _ € m
5E + £ (¥ v + v vS) 2 ;5 T (5.13)
0= - 224 Py (5.14)
C s

The bottom shear stress, and especially its direction, is
influenced much more directly by the secondary flow. Since the
direction of the bottom shear stress is of predominant
importance to the transverse bottom configuration in alluvial
channel bends, the secondary flow inertia must certainly be

accounted for in the bottom shear stress computation step.

5.4. Interpretation of the simplified equations

In spite of the simplifications, the momentum equations derived

in the foregoing paragraph, especially the radial one, are not
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very transparent.

A better insight into the structure of the equations is
obtained by transforming them to stream—oriented coordinates.
To that end a curvilinear coordinate system (n,s,7) is
defined, in which & is the distance along the streamlines of
the depth-averaged flow, normalized by Rc’ and n the distance

. . * .
along the normal lines, normalized by d ). If the corresponding

s- and n-wise velocity components are denoted by U, and Vot Vg

respectively,um is identically equal to zero by definition.
The transformation of which no details will be given, leads to

the following equations of continuity:

aum um me

FEO T
n

BUS c Bws

B

, where 1/rs and l/rn are the local curvatures (normalized

by RC) of the streamlines and the normal lines, respectively**).

The transformed momentum equations read

Bum Bum e Bum 5 2
eRe {um 3 * 7)s ( w7 Um Vs 3T b= ds * vlum
2 N
v U 3w
3 E] 2 m 3 2.2 2 m
2 mo 9P v —rt
¢ Re Un 3 * e Re ry o re 1Us te LE]

s increases in the main flow direction, n from the left bank on

(see also figure 23).

l/rs is taken positive when the normal lines converge and l/rn

is taken positive when the streamlines converge.

(5.15)

(5.16)

(5.17)

(5.18)
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In this transformed system the main and the secondary flow are
separated, in that the main flow is described by equations
(5.15) and (5.17) and thé secondary flow follows from equations
(5.16), (5.18), and (5.19). The main flow momentum equation
(5.17) accounts for the streamwise inertia of the main flow
and for transverse convection and diffusion. The secondary
flow equations (5.18) and (5.19) involve streamwise inertia

and transverse diffusion terms and two types of source terms,
viz. the usual centrifugal term (based on the local streamwise
curvature now) and a term due to the streamwise variation of
the main flow vorticity. As the former term is of the order
O(ezRe) and the latter of the order 0(52), the vorticity

term is likely to be of minor importance as a source of
secondary flow.

The main flow momentum equation (5.17) can be used to analyse
the mechanism of the transverse redistribution of the main

velocity under the influence of secondary flow convection. If

lateral diffusion is disregarded and

w, = u, (n,8) £0)

, then equation (5.17) can be rewritten as

—5F -
+ gRe _f =~ 0
Vs BC} Y 5%

(5.19)

(5.20)

(5.21)
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Along the characteristics

%’;— = a;?/@m fz) (5.22)

this equation becomes

3f fy; .-
eRe f2 u ds {BC =1 + eRe g 82;} . i (5.23)

(cf. Kalkwijk et al., 1980).

The quantity v f tends to be positive when the normal lines
diverge (i.e. 1/r negative) and negative when they converge )
Hence the characterlstlcs (5.22) will be directed outwards, at
least at some distance downstream of a point where the stream-
line curvature changes sign.

The quantity in braces in equation (5.23) will be positive as
long as L is not distinctly negative, i.e. away from the

outer wall. Then the depth-averaged main velocity will show

a retarded adaptation to its source - %E\ Close to the outer
wall, however, the damping factor in (5.23) can become

negative and in that case the main velocity would tend to
increase exponentially along the characteristics if it were not
damped by lateral diffusion.

As a conseguence of the outward characteristic direction and
the damping character of equation (5.23) in the greater part

of the cross-section, the influence of the local main velocity
reduction in the inner wall region (due to secondary flow con-
vection; see chapter 3) will gradually extend further outwards,
growing weaker and weaker. Hence the main velocity redistribution
in developing curved flow at a constant intermediate Dean number

shows a striking resemblance with the deformation of the main

The streamwise inertia of the secondary flow keeps the sigp of
vsf from being determined exclusively by the sign of the local

streamline curvature.
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velocity distribution in fully-developed flow at gradually
increasing De (chapter 3). In the first part of the bend,
where the secondary flow is still establishing, the potential
flow effect will dominate (cf. low Dean number flow; see also
figure 3), but on proceeding through the bend the influence

of secondary flow convection becomes perceptible, first in the
inner wall region, later on also in a gradually extending part

of the central region.

5.5. Similarity approximation in the main flow computation step.

In chapters 3 and & the similarity approximation (3.41) was
shown to hold good for fully-developed flow in shallow curved
channels. A generalized form of this approximation is adopted
for developing flow, at least in the main flow computation
step (cf. par. 5.3). Accordingly, the main velocity components

are given by
u = u F(z39) and v = v S(z;9) (5.24)

, i.e. the vertical distribution function f is assumed to

be invariant in a eross—section, but it is allowed to vary
weakly with ¢, in such a way that its ¢-derivatives are
negligible with respect to the ¢~derivatives of u.

The equation of continuity (5.8) allows for the definition

of a stream function for the secondary flow. Regarding (3.8) and
(3.12) and adopting the same similarity approximation as for the

main flow, this definition reads

_ Re 3y _Re 3 . -
VS = - ;_5? and WS = ;—‘-é—g— with Yooy g(C;¢) (5.25)

Substituting (5.24) and (5.25) into the longitudinal momentum

equation (5.9) and neglecting the derivatives of f and g with

respect to ¢ leads to
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Another conclusion to be drawn from the fully-developed

flow investigations is that the pressure is almost hydrostatic.
Hence the longitudinal pressure gradient can be assumed indepen-—
dent of ¢ and (5.26) can be considered as an equation for f

with a constant source term. If the quantitiy f2 in the main

flow convection terms is approximated by }f, } denoting a known
estimate of f, equation (5.26) becomes linear in f. As a
consequence, the unknown variable f in this equation can be re-
placed by the quantity f' = - f(i %%9 . If, in addition, the
vertical distribution functions are evaluated in the channel axis,

where lateral diffusion is negligible, equation (5.26) can be

replaced by

2 T - -
=37/ 2u3yp  3f 2y ,9u , & = 3¢
S s 12 LR A
G du = du -
- ¢Re (—-5%~+ v 5% + §>vu) } P o= -1 (5.27)

and £ = F' /77 . If 4, ¥ and g are known, f can be solved
from this equation and conditions (4.30).

Averaging equation (5.26) over the depth of flow yields

cRe £ (%E«‘—l-+§§3+—§—§x_z)+Dezg§f{‘~b—(§—\i+—§~ﬁ)+

+
Hig1
Qs
=
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Similarly, the depth-averaged version of the radial momentum

equation (5.13) reads

e Z A Z®, 00 TF G,
£ Re f2 (r 3 + v BE f2 ;T te De 9 3% {r Y 5% }
B . 2 0% . e dv _ - of
B {agz Trae Y 8§;c=—1 *
- 2 3 —_
3z lg=~1 r

Together with the depth~averaged equation of continuity

and an appropriate set of boundary conditions, equations (5.28)
and (5.29) can be used to determine the depth-averaged velocity
and pressure fields.

The stream function equation for the secondary flow to be

derived from the momentum equations (5.13) and (5.14) reads

- N
MNP i N R TV
r 5E r ag T 5g2 r 9% Bcz r aca
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Making use of equatioms (5.4) and (5.27) and of the expressions

for l/rS and l/rn derived by De Vriend (1978b)
1 1 -, Sov., - @ 4 du , ~ ou o
;g.= 55 {ule ;.55-+ eV gE T T ) - evis %Y FT ;-vu)}

(5.29)

(5.30)

(5.31)
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, this equation can be elaborated to

_1_(_3_4_@__ EB‘P) z(ﬁ_ia¢)_zﬂ+§_iq.=

r 354 r 35 r 852 r 3% 3C2 r ac&
11 % ar 3 af? ¥ *
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, where am denotes the vorticity of the depth-averaged

flow. The streamwise variation of this main flow vorticity

is 1likély to be of minor importance as a source of secondary
flow and also the convection terms in (5.33) will be unim~
portant, except locally near the entrance and the exit of a bend.
So in the main flow computation step these terms are likely to
be negligible. If g is determined in the channel axis, the
radial derivatives of ¢ are negligible and squation (5.33) leads
to the same system for g as in fully-developed flow (see
equations (4.31) and (4.32)).

Regarding the aforementioned simplifications, averaging (5.33)

over the depth of flow yields

37 e 370 3°Y _ £ 3V, dg
e e . Y ) +
aga r aE3 ag2 r 8% 5z |z=0
3 3 -2
+w(§_.§_ _i_% _;Lf-zi " (5.34)
327 |z=0 3r|g=-1 g

, from which ¥ can be solved if u, g, f and l/rs are known.
So if the similarity approximations (5.24) and (5.25) apply,

the vertical and horizontal distributions. of the main and the

Note that the source terms in this equations agree with the ones

in equation (5.18).
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seecondary flow can be computed sepazately.

5.6. Solution procedure for the main flow computation step

The computational procedure of the mathematical model will be
split into two subsequent steps, as was suggested in the fore-
going. These two steps are:
the main flow computation step, especially aiming at the
depth-averaged velocity field, and
the bottom shear stress computation step, especially aiming
at the magnitude and the direction of the bottom shear stress.
The former step allows for a more or less approximative
computation of the secendary flow and the vertical distribution
of the main velocity, the latter one involves more accurate
computations of these quantities, but no further adjustment
of the depth-averaged velocity.
As was shown in par. 5.5, the main flow computation consists
of four elements, viz. the computations of f, g, @ and the
depth-averaged flow. Each of these quantities, however, can
only be computed if known estimates of one or more of the
other ones are available. This implies that an iterative
solution procedure must be drawn up, involving each of the
above elements.
The following procedure is adopted:
1. Estimate f, g and ¥, by taking the low Dean number limits of
the vertical distribution functions (see equation 4.19),
for instance, and setting ¥ = O.
2. Determine u, v and 5 on the basis of equations (5.4), (5.28)
and (5.29), using one of the computation methods described
in Appendix C.
3. Calculate the local streamline curvature using (5.31).
4, Solve @ from equation (5.34) with boundary conditions (4.36).
5. Solve f from equation (5.27) with conditions (4.30}.
6. Solve g from equation (4.31) with conditions (4.32).
7. Repeat the procedure from 2 on, until a termination criterion

is satisfied.

If nessessary, convergence can be improved by applying damping
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rules like (4.37) to each of the elements 2, 4, 5 and 6. Since
the procedure is aiming at the depth-averaged flow, the termina-
tion criterion concerns u.

It reads (cf. conditon 3.25)

max {}G(“) - E(m'1>i} < 8 (8§ << 1) (5.35)

5.7. The bottom shear stress computation step

A most important assumption underlying the main flow computation
is the applicability of the similarity approximations (5.24) and
(5.25). Longitudinal acceleratioms of the main flow, however, are
known to give rise to deformations of the velocity profile
(Schlichting, 1951; De Vriend, 1976 & 1977) and hence to changes
in the relation between the bottom shear stress and the local
depth-averaged velocity. Since, for the present uniformly shaped
channel, the longitudinal accelerations must have a zero cross-
sectional mean value, they must be distributed non—uniformly over
a cross-section, so that they will affect approximation (5.24),
which supposes f independent of &£. Therefore this approximation
is generalized in the bottom shear stress computation step,

in that f is allowed to vary weakly with £ as well as ¢, in

such a way that the £- and ¢-wise derivatives of f are negligible

compared with the £~ and ¢-wise derivatives of u. So

uo=u fL, €, ¢)  and v =V f(e5 &, 9) (5.36)
This provides the possibility to correct f for the effect of

not too strong longitudinal accelerations after having computed

the depth—averaged flow*).

As solving equation (5.26) or (5.27) in all verticals of a

cross-section appears to yield erroneous results, this correction

If the effect of the accelerations on the bottom shear stress
gives rise to unacceptable changes of the depth—averaged flow,
it should be accounted for in the main flow computation step,

as well (see par. 5.8.1).
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is introduced by solving the following modified version of

equation (5.27) in all verticals:

2' — e - -~
= 9°f 525 (L3 of! 22 @ Bu,enn] 2
u = De” u (3 BE) =0 9 57 * |DeTu {+ (aE + 7 u)} £=0 3¢ *
3T - ru
- €Re (%-%%~+ v 3§-+ = ) }J =1 (5.37)

with conditions (4.30).

Once f is known, the relation between the longitudinal component
of the bottom shear stress and the local depth-averaged velocity

can be established.

After normalization by pVZ/Re, this component follows from

n Ju

T¢b 3% =u 3f (5.38)

z=-1 = " Brje=-1

The radial component of the bottom shear stress, made dimension-

less by the same factor as the longitudinal one, follows from

- 2
S N ¥ N
R s BT [ BN 1 N (5.39)

The secondary flow part of this component must be determined

rather accurately, since it is this part that causes the

transverse bottom slope in alluvial river bends.

In the main flow computation step the radial and vertical

momentum equations were simplified at the following points:

a. the transverse inertia of the secondary flow is neglected
on the basis of the results of the fully-developed flow
investigations;

b. the streamwise inertia of the secondary flow is neglected;
this is likely to give rise to important errors in the
secondary flow part of ¥rb near the entrance and the exit of

a bend;
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c¢. the convective effect of the secondary flow on v is
neglected; regarding equation (5.33), this seems to be
unacceptable near the entrance and the exit of a bend;

d. only the streamline curvature is retained as a source of
secondary flow; although the second source, due to the
streamwise variation of the main flow vorticity, is of
minor importance in a bend, it could be of some importance
in a straight reach beyond a bend, where it decays much
slowlier than the streamline curvature (De Vriend, 1978b);

e. the vertical distribution of the stream function is
agssumed independent of £; as the vertical distribution of
the main velocity varies with £, this assumption introduces
an error in regions where important streamwise accelerations
of the main flow occur;

f. the vertical distribution of the stream function is assumed
weakly dependent on ¢, or, in general, on the longitudinal
coordinate; this may introduce errors in the description of
the secondary flow beyond a bend (see Appendix B); still this
assumption will be maintained, since the bottom shear stress
due to the secondary flow is much less sensitive to these
errors than the secondary flow intensity (Appendix B).

Taking account of these arguments, the stream function equation

to be derived from (5.10) and (5.11) can be elaborated to
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When attempting to compute g on the basis of this equation with

I resulting from the main flow computation step or, in an iterative
procedure, from the depth—averaged version of this equation, the
streamwise inertia terms give rise to erroneous solutions or even
ill-convergence near the exit of a bend (De Vriend, 1978b). On the
other hand, it is shown in Appendix B that neither the equation
including the streamwise derivatives of g nor the equation for g
in which the streamwise inertia terms are neglected give rise to
problems, at least in the simple case considered there.
Apparently, the streamwise inertia terms and the streamwise
derivatives of g should be retained or neglected both. Regarding
point f, the latter possibibility is chosen.

In order to account for the radial variation of f, g is allowed

to vary weakly with & (cf. assumption 5.36) and it is solved in

all verticals from the truncated stream function equation

3w -2
Sgl 1 _m3df ru ﬁfi (5.41)
4T Re 6 sz w_ L '

with conditions (4.32).
The depth-averaged stream function @ follows from the depth-

averaged version of (5.40), reading
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, with the boundary conditions (4.36) and the inflow conditdon
¥ = 0, supposing the channel sections considered here to be

preceeded by a long straight reach without secondary flow.

As long the influence of the streamwise main flow accelerations
on f is not too strong, it is sufficient to correct f for this
influence by solving equation (5.37) on the basis of the

results for u, y and g as obtained from the main flow computation
step. As the equation for g is simplified in such a way that g

is independent of ¥, this implies that the four elements of the
bottom shear stress computation step, concerning f, ¢, ¥ and

the shear stress components, respectively, have to be gone

through only once.

5.8. Verification of the simplifying assumptions

The mathematical model of developing laminar flow derived in the
foregoing is based on a number of simplifying assumptions. Apart
from the ones that were also made for fully-developed flow, the
most important of these assumption are:

the simplification of the main flow convection terms in the
main flow equations,

the vertical similarity of the main velocity distribution in
the main flow computation step,

the neglect of the streamwise inertia of the secondary flow

in the main flow computation step,

the other simplifications of the stream function equation for
the secondary flow in the main flow computation step and

the partial neglect of the streamwise inertia of the secondary
flow in the bed shear stress computation step.

It will be attempted to verify these assumptions one by one,
either by estimating the magnitude of the neglected terms or by
considering the effect of including these terms in the model. This
verification will be carried out omn the basis of computational
results for the so—-called LFM~flume (see chapter 9), which has a
rather sharp 180° bend giving rise to rather strong curvature

effects (De Vriend, 1979> & 1980b).
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5.8.1. The simplification of the main flow convection terms

In the stream-oriented coordinate system described in par. 5.4,
the complete main flow momentum equation contains the main flow

convection terms

aum aum
ER A v

eRe {um
The simplifications of the main flow convection terms in the
actual model, on the basis of the similarity hypothesis for the

main flow, are equivalent to putting

3 3
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Making use of equation (5.15) and the generalized similarity

hypothesis for the main flow (cf. (5.20) and (5.36))

u, = u flgin,s)
, the vertical component of the main velocity can be expressed
as
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Then approximation (5.43) can be elaborated to
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Both terms in the left hand part of this approximation vary
about zero, in such a way that the first term may become
smaller than the second one.

If this occurs when all main flow convection terms are

(5.43)

(5.44)

(5.45)

(5,46)
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unimportant, however, approximation (5.46) is still acceptahle.
Therefore this approximation is assumed to hotd good if the
range of variation of the first term is much larger than the
range of variation of the second one.

Figure 24 gives a rough indication of the extrema of the two
terms for the LFM~flume with De = 25. It shows that the range

of variation of the first term in (5.46) is far the largest, indeed.

5.8.2, Vertical similarity of the main velocity distribution

In the main flow computation step the main velocity distribution
is assumed strictly self-gimilar in a cross—section. As was shown
in chapter 4, this similarity hypothesis holds rather good for
fully~developed curved flow and it is likely to allow for a proper
representation of the effects of diffusion and secondary flow
convection in developing curved flow, as well. Longitudinal
accelerations of the main flow, however, will give rise to
deformations of the main velocity distribution (see par. 5.7).
Hence the similarity approximations (5.24) and (5.25) in the main
flow computation step will cause errors in the depth-averaged
velocity field.

An indication of these errors in the results of the main flow
computation for the LFM-flume (De = 25) is given in figure 25. The
reference distributions in this figure are obtained from an
extended version of the main flow computation step, with the
generalized similarity approximation (5.36) instead of (5.24) and,
correspondingly, equation (5.37) instead of (5.27). It becomes
evident that, although the vertical distribution function f under-—
goes considerable deformations, especially near the entrance and
the exit of the bend, the distribution of u is hardly affected.
Hence it is concluded that the strict similarity approximation

(5.24) is applicable in the main flow computation step.

5.8.3. The stream function equation for the secondary flow in

the main flow computation step,

In the main flow computation step a strongly truncated version
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of the stream function equation for the secondary flow is used
(see par. 5.6). Both the streamwise inertia and all sources
but the main flow curvature are neglected. Since the neglected
terms vanish as the flow becomes fully-developed, these
simplifications have to be verified for developing flow.
To that end a reference computation was made for the LFM-flume
at De = 25, with the extensive stream function equation (see
par. 5.7) in both computation steps.
Figure 27 shows that the main velocity distribution obtained
in this way differs only slightly (less than 10%) from the
distribution found by the procedure described in par. 5.6. The
essential features of the main velocity redistribution in and
beyond the bend, such as the outward shift of the velocity
maximum and the flattening of the vertical distributidn, are
globally the same in either case.
Still this does not prove the truncated secondary flow equation
applicable in the main flow computation step, since small
differences in u could give rise to much larger differences in
the secondary flow and the bottom shear stress. Figure 28 gives
the bottom shear stress results from three different computations,
with
the truncated secondary flow equation in both computation steps,
the truncated secondary flow equation in the main flow computation
step and the extensive one in the bottom shear stress computation
step and
. the extensive secondary flow equation in both computation steps,
respectively.,
Taking the results of the last computation as a reference, the
bottom shear stress resulting from the first one is up to 20% too
small in the greater part of the bend (see figure 28a).In contrast
with the expectation, however, the results of the second computation
are hardly better or even worse. The same phenomenon can be observed
in the direction of the bottom shear stress, though the differences
are much larger here (locally up to 109, whereas the overall
mean angle is about 20°; see figures 28b and c¢): in the greater

part of the bend the results of the second computation are hardly
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better and sometimes even worse than the results of the first one.
The differences between the bottom shear stress results from the
three computations may have two causes, viz.:

differences in the main bottom shear stress factor and

3f

3 jg=-1
differences in the secondary flow.

According to figure 28d, the differences in the main bottom shear

stress factor show the same tendency as the ones in the bottom shear

stresses, but they are relatively small. Obviously, the greater part

of the differences, especially in the direction of the shear stress,

must be attributed to the secondary flow.

Figure 29 shows the secondary flow to be strongly influenced,

indeed. In the first part of the bend, where the streamwise inertia

of the secondary flow is important and the main velocity is hardly

affected by secondary flow convection, the results of the two-step

computation agree well with the ones of the extensive computation.

As soon as secondary flow convection becomes important to G, however,

the two—step results lie much closer to the results of the truncated

computation, except for the decay region beyond the bend (figure 29b).

This illustrates that in the greater part of the bend the differen-

ces from the results of the extensive computation are only indirectly

due to the truncation of the secondary flow equation: as all neglected

terms are small there, including them has hardly any effect as long

as u is kept the same. Including the effects of the truncation on u,

however, has a much stronger effect, the principal source term in

the depth—averaged secondary flow equation being proportional to

2

u Obviously, it is the interaction between the secondary flow

andctge main flow that gives rise to the strong influence of the
simplifications in the secondary flow equation halfway the bend.

The conclusion to be drawn from the foregoing is that the two-step
computation procedure suggested in par. 5.6 and 5.7 leads to import-
ant errors in the secondary flow and in the magnitude and the
direction of the bottom shear stress. The extensive secondary flow
equation described in par. 5.7 should be used throughout the

computation rather than in an additional bottom shear stress

computation step alone.
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5.8.4. The partial neglect of the streamwise inertia in the

secondary flow computation.

In the extensive secondary flow computation suggested in par.
5.7, streamwise inertia is included in @ (equation 5.42), but

not in g (equation 5.41). This partial neglect of the stream-
wise inertia was based on Appendix B, where the bottom shear
stress due to the secondary flow in a straight reach beyond a
bend is shown to be less sensitive to this simplification than
the rate of decay of the secondary flow.

In order to verify this conclusion for the whole bend, the bottom
shear stress computation step should be repeated with the stream—
wise inertia and the streamwise variation of g included in the
secondary flow computation.

In that case the stream function equation to be derived from

equations (5.10) and (5.11) becomes
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For the computation of g all E-derivatives are neglected and
only the most important streamwise Inertia terms are retained.

Then equation (5.47) reduces to

4 T
724 - e ——E-sf (5.48)
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Averaging (5.47) over the depth of flow yields the following

equation for U
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For the sake of simplicity f and g are assumed independent
of £ and out of their ¢-derivatives only the ones figuring in
(5.48) are retained. Then the bottom shear stress computations
for the LFM-flume (De=25) yield the results represented in

figure 30.
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As expected, the depth-averaged stream function of the secondary
flow, shown in figure 30a, is somewhat more sensitive to the
partial neglect of inertia than the direction of the bottom

shear stress (figure 30b).

Apart from local deviations, especially in the inner wall region
in the first part of the bend, the direction of the bottom

shear stress is not affected very strongly. Therefore the present

simplification is thought to be justified.

5.9. Qualitative comparison with measured data for turbulent flow

The experimental verification of the mathematical model described
in the foregoing is somewhat problematic, as experimental informa-
tion on developing laminar flow in curved shallow channels, if
available at all, is rather concise (Asfari, 1968). The only
possible way of verification is a qualitative one, viz. a compari-
son with equivalent turbulent flow experiments.

The data to be used for this qualitative verification stem from
two series of experiments on turbulent flow in curved shallow
channels, viz.

experiments carried out in the Laboratory of Fluid Mechanics of
the Delft University of Technology in a 1.70 m wide flume
consisting of a 180° curved section with a radius of curvature
of 4.25 m and two straight inflow and outflow sections of about
6 m effective length (see par. 9.2.4. and also De Vriend, 1976,
1977 and 1979b),

experiments carried out at the '"De Voorst''-branch of the Delft
Hydraulics Laboratory in a 6.00 m wide flume consisting of a

32 m long straight inflow section and a curved section of about
90° with a radius of curvature of 50.00 m (see par. 9.2.1. and
De Vriend et al., 1977).

These two flumes will be referred to as the LFM~flume and the
DHL-flume, respectively. The flow conditions during the experiments
chosen for the verification are summarized in the following table,
in which Reo denotes the effective Reynolds number 13C//g (see

chapter 6) and DeO = Reo/e.
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R B d C Re De
e 0
1
flume (m) (m) (m) (m3/s) (m?*/s)
LFM 4,25 1.70 0.17 0.19 30 125 25
DHL 50.00 6.00 025 0.61 50 212 15

In the mathematical simulation of these experiments the laminar

Reynolds number was chosen equal to Reo (see also par. 7.8).

The verification of the model consists of a qualitative comparison

of the measured and computed depth-averaged main velocity fields.

Other quantities were not considered, either because they have not

been measured (Tb, aT) or because they are essentially different

for the two types of flow (f, g and ¥).

The computed depth-averaged velocity distribution agrees rather

well with the measured data, in spite of the difference in flow

type (figure 31).

Only close to the sidewalls the laminar velocities are somewhat

smaller than the turbulent ones, as a consequence of lateral diffusion.

Furthermore, the convective influence of the secondary flow in the

first part of the bend seems to be considerably stronger for laminar

flow, which can be explained in two ways:
it is caused by an essential difference in behaviour between laminar
and turbulent flow in the first part of the bend, as suggested by
Asfari (1968); he carried out turbulent and laminar flow experiments
in the same flume and concluded that the turbulent flow tended to
shift inward in the first part of the bend before shifting gradually
outwards, whereas the laminar flow appeared to start shifting out-
wards immediately after entering the bend;
the turbulent Dean number gives no appropriate estimation of the
laminar Dean number to be used in the mathematical simulation; when
considering the depth-averaged velocity field in another LFM-—
experiment (C=60 m%/s), for instance, the influence of secondary
flow convection seems to be even smaller than for C=30 m%/s (De

Vriend, 1976; see also par. 9.2.4), whereas the laminar simulation
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with De=De. would suggest much stronger effects of convection

0
(cf. chapter 3).

Either of these explanations will be discussed in chapter 7.

5.10 Discussion

It becomes evident from the foregoing that the two-step computational
procedure described in par. 5.6 and 5.7 works well, provided that the
streamwise inertia of the secondary flow intensity is accounted for

in either computation step. Still this does not imply automatically

that this procedure will also be suited for the computation of turbulent
flow, where the mutual importance of the various groups of terms in

the equations can be different. Therefore the verification of the simpli-
fications described in par. 5.8 will have to be repeated for the
turbulent flow meodel.

For the two cases of turbulent flow considered in par. 5.9, the
simulation with the present laminar flow model yields a far better
prediction of the depth-averaged main velocity redistribution than

a simulation with a turbulent flow model disregarding secondary flow
convection (De Vriend, 1976 & 1977; De Vriend et al., 1977). This
illustrates, once again, that the main velocity redistribution in a
bend is a matter of convection rather than of turbulence.

As was suggested in par. 5.9, the Dean number in a laminar simulation
of turbulent flow in curved rectangular channels cannot simply be

taken proportional to the effective Reynolds number 13¢//g. The

relation between De and the flow parameters for this kind of simulation

needs further investigation.

5.11 Summary of conclusions

The definition of main and secondary flow given in par. 3.2 provides
the possibility of separating the equations of continuity for these
two flow constituents. Besides, a far-going separation between the
momentum equations for the main and the secondary flow can be achieved.
This separation, combined with similarity hypotheses for the main

and the secondary velocity components, can be used as a basis of a

simplified computation method for developing laminar flow in curved
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shallow channels, with the following outlines:

- a main flow computation step, which is an iterative process of
alternate computations of the depth-averaged main velocity
field, the vertical distribution of the main velocity, the
vertical distribution of the secondary flow and the depth-
averaged stream function of the secondary flow; as this step
is meant to determine the depth-averaged main velocity field,
the other quantities are calculated only approximately, assuming
strict similarity in every cross-section;

- a bottom shear stress computation step, in which the depth-~
averaged main velocity field is kept fixed and the vertical
distribution of the main velocity as well as the vertical
distribution and the depth-averaged stream function of the

secondary flow are determined more accurately,

A closer investigation of the various elements of this computation
method and of the possibility to introduce simplifications has shows
that

~ various basic concepts can be adopted for the computation of the
main velocity field (see Appendix C); the most economic of these
concepts are based on the direct calculation of the depth~averaged
velocities and pressures using a forward marching technique; if the
flow is mildly curved, it can be calculated with sufficient accuracy
in one single sweep (parabolic procedure), which is quite efficient;
even if repeated sweeps are needed, however, this approach (in its
so~called partially-parabolic mode now) is still far more economic
than a stream—function/vorticity method, for instance;

- the main velocity can have a non-zero vertical component; the
convective influence of this component can be disregarded;

- the transverse similarity of the vertical distribution of the main
velocity is affected by longitudinal accelerations of the main flow;
this effect can be left out of consideration in the main flow
computation step, but it can have a considerable influence on the
magnitude and the direction of the bottom shear stress;

- the gradual growth and decay of the secondary flow cannot be left

out of consideration in either computation step; in the one for the
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main flow, however, the attendant deformations of the vertical
distribution function g need not be accounted for, provided
that all streamwise inertia terms are omitted from the equation
for g; disregarding these deformations leads to a too rapid
growth and decay of the secondary flow intensity, which is not
allowable in the bottom shear stress computation step;

- though there is an additional source of secondary flow, related
to the longitudinal variation of depth-averaged main flow vorticity,
the streamline curvature is far the most important source of second-

ary circulation, such that the additional one can be disregarded.

By lack of experiments on laminar flow in curved shallow channels,

the simplified mathematical model described herein could not be

verified experimentally. A global comparison with the measured data

from turbulent flow experiments has led to the conclusion that the
deformations of the main velocity distributions show qualitatively

the same features.

These deformations can be characterized as follows:

- as the flow enters a bend, the streamline curvature and the cor-
responding transverse pressure gradient develop rather quickly
(over a distance 0(B) around the bend entrance); the attendant
longitudinal pressure gradients give rise to a longitudinal
acceleration of the flow in the inmer bend and a deceleration in the
outer bend; as a consequence, the main velocity distribution is
skewed inwards in the first part of the bend;

- on proceeding through the bend, the influence of secondary flow
convection becomes perceptible; first, the local effects in the
sidewall regions (decrease of U near the inner wall, increase near
the outer wall; local deformations of u/u) come into existence;
subsequently, the horizontal interaction develops and causes a
gradual and retarded outward extension of the region of reduced
U near the inner wall, whereas the peak in u in the outer bend is
compressed against the wall; if the bend is long enough, this process
goes on until'the outer wall region is reached and the main velocity

distribution shows the features described in chapter 3;

~ along with the transverse redistribution of u, the vertical
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distribution of the main velocity is gradually distorted; in the
larger part of the cross-section, the vertical derivatives of the
main velocity tend to become smaller near the surface and larger
near the bottom; consequently, the bottom shear stress compared
with the depth-averaged main velocity increases on proceeding
through the bend;

near the exit of a bend, a rapid decay of the transverse pressure
gradient occurs (length scale B, again); the attendant longitudinal
pressure gradients give rise to an additional outwards skewing of
the main velocity distribution;

if the bend is followed by a straight reach, the skewness of the
main velocity distribution (or rather: the additional vorticity of
the depth-averaged main flow) damps out gradually and without

oscillations.

TI=HT
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6. The modelling of turbulence

6.1. General

As was shown in chapter 2, the time-mean momentum equations for
steady turbulent flow contain terms with the time-mean products

of the velocity fluctuations, the so-called Reynolds stress terms.
The Reynolds stresses, which are essentially due to turbulence,

must be related to the mean flow in order to be able to describe
this mean flow by the time-mean balance equations for mass and
momentum (Launder et al., 1972; Hinze, 1975).

The equation (or system of equations) relating the Reynolds stresses
to the mean flow is called turbulence model.

The literature gives a wide variety of such turbulence models,
ranging from direct algebraic relations between the components of
the Reynolds stress tensor and mean flow guantities to complicated
systems of transport equations for turbulence properties (see
Launder et al., 1972; Rodi, 1978b).

Since the present flow model is meant to be incorporated in a larger
model for alluvial river bends (see chapter 1), in which it is to be
activated frequently, it is necessary to reduce the expenses of the
flow computations as far as possible. Therefore the simplest allowable
turbulence model will be applied here. The rather good prediction of
the depth-averaged main velocity in turbulent flow by the laminar
flow model described in the foregoing chapter (see par. 5.9) suggests

this turbulence model can be a fairly simple one.

6.2. Mixing length hypothesis

It is a rather common practice in turbulence modelling to assume an
analogy between the turbulent diffusion of momentum, defined as the
time-mean exchange of momentum due to turbulence, and the molecular
one. On the analogy of the relation between the viscous stress tensor
and the rate-of-strain temsor through the molecular viscosity n, the
components of the Reynolds stress tensor are assumed proportional to
the corresponding components of the rate-of-strain tensor, with the

scalar At (eddy viscosity, turbulence viscosity) as a factor of
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proportionality (see par. 2.2). The eddy viscosity At is assumed
to depend on the mean properties of the flow only.

Although fundamental objections can be made against the eddy
vigcosity concept (Hinze, 1975), it appears to yields a satisfac-
tory description of the mean flow properties in many cases of
turbulent flow (see, for instance: Rodi, 1978b).

Since At depends on the mean flow, which in turn depends on At’
the mathematical system describing the mean flow is not closed
until either a relation between At and the mean flow properties
has been established or additional differential equations have
been formulated, from which such a relation can be derived. In
general, these additional equations describe the production,
transport and dissipation of turbulence properties (see Launder

et al., 1972, and Rodi, 1978b).

A direct algebraic relation between At and certain mean flow
properties is mathematically the simplest. Therefore a turbulence
model of this type will be adopted here. A widely applied group of
such models is based on Prandtl's mixing lengh hypothesis (Prandtl,
1925), which can be generalized to (Rodi, 1978b)

3v. 9v, av,| 1/2
= 2 PR A S *
At B me ij * axi) ij (6.1

» in which v, (i=1,2,3) denotes mean velocity component in the
xi—direction of the cartesian coordinate system (Xl’XQ’XB)' If the
mixing length L, can be prescribed or can be expressed explicitly
in terms of mean flow quantities, (6.1) is a direct algebraic
relation between At and‘the mean flow, but even this relation is
fairly complicated in its general form. In the present flow case,
however, the coordinate system can be chosen in such a way, that
certain components of the velocity vector and the rate-of-strain
tensor become predominant. Hence it must be possible to simplify

(6.1) drastically.

) The Einstein summation convention applies to the term in brackets.
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6.3. Uniform rectilinear shear flow

In order to have an indication of how (6.1) could be simplified,

the well-known case of uniform rectilinear shear flow is considered.
In a cartesian coordinate system (x,y,z), with the x—axis in the flow
direction and the z-axis vertically upward, there is only one non-zere

component and relation (6.1) reduces to

2 aVx

At = me T2 (6.2)
Then the normalized system of equations describing this flow
reads (see par. 2.4)

=-® ,3 (, 8
0 s T E]4 (a 3L (6.3)

2 {3u

= — a

a=1l | Reg (6.4)

, in which Zm is the mixing length normalized by d and s is

the normalized streamwise coordinate.

The vertical distribution of Zm in (6.4) determines the vertical
distribution of u. It is rather usual to prescribe Zm in such

a way, that the distributions of ¢ and u are in good agreement
with experiments.

In practice, u(z) can often be approximated by rather simple
mathematical expressions, such as logarithmic or power law
functions (see, for instamce: Reynolds, 1974). According to
Rozovskii (1961), the logarithmic profile is the best suited

as a first approximation of the main velocity distrihution in

a bend. Therefore the mixing length distribution is chosen such,
that it yields a logarithmic velocity profile in uniform flow.

Hence

5
5§> Re (6.5)

a=- ch(1+c>2 0
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, where « denotes Von Kirman's constant, and

, in which ;* is the level slightly above the bottom where

u=0. Adopting Chézy's factor C as a characterization of the
. * .

bottom resistance ), this level follows from (see also De

Vriend, 1976)

* xC
v = -1 + exp(~1 ~
p 759

and the logarithmic velocity distribution becomes

- Vg | Va
= — wrY)
u=u {1+ i In(l=zg))

Substitution of (6.8) into (6.5) yieldes
- _ /g
= G c(1+zg) ReO

This parabolic distribution of the turbulence viscosity

and the corresponding logarithmic distribution of the
velocity seem to be in good agreement with various
experiments reported in the literature (see, for instance,
Vanoni, 1946, and Jobson et al, 1970; see also par. 6.6.1 and
6.6.2).

Regarding definition (2.26), the depth—averaged value of «

must be equal to one here. Hence

In fact, the quantity C//g should be used to characterize the
bottom roughness, since flow resistance has nothing to do with

gravity, whereas Chezy's factor is proportional to Vg.

(6.6)

(6.7)

(6.8)

(6.9)
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7% and a = -6z (1+z) (6.10)

So the effective Reynolds number is proportional to the
dimensionless bottom resistance factor C/Yg. Similar results
for Reo can be found in the literature (Engelund, 1964 & 1974,
Rastogi et al., 1978), but the coefficient of proportionality

is mostly somewhat different (see par. 6.6.1).

6.4, Fully-developed straight channel flow

In case of a straight rectangular channel of finite width, but
without secondary circulations, the streamwise momentum

equation for fully~developed flow becomes

- 8,8 3 3
0 Y 5% (a 3C> + 3% (a ag) (6.11)
and the corresponding version of the mixing length hypothesis
(6.1) reads
_ 42, .0u\? du 2,4
a = Zm {(BC) + (EE) } Re, (6.12)

, in which the distribution of Zm(g,c) must be given in order

to solve the distrihution of u from (6.11) and (6.12). The choice
of Zm, however, introduces important uncertainties, so that the
computational effort needed to solve the rather complicated
system (3.9)-(3.10) may be unjustified. In that case either more
sophisticated turbulence models have to be applied (see, for
instance; Rastogi et al., 1978; Rodi, 1978b; Leschziner, 1978),
or more crude, but simpler models can be used just as well.

As the modelling of turbulence is not expected to be of

primary importance to the preseritrcurved flow computations

(cf. par. 5.9), it will be attempted to find a simpler mode

than (6.12).

The channels to be considered are shallow, so that the vertical
diffusion of momentum will be predominant in the greater part

of the cross-section. Only at relatively small distances (order
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of magnitude d) from the sidewalls the influmnce of horizontal
diffusion will be perceptible. Although in curved rectangular
channel flow an accurate description of the flow near the
gidewalls, especially near the inner wall, may be needed in
order to have a good prediction of the flow in the other parts
of the cross—section (see chapters 3 and 4), the accurate
description of the flow in the sidewall regions itself is not
aimed at. Besides, in the actual applications of the mathematical
model to alluvial channels, a vertical inner sidewall, if present
at all, will be of minor importance because of the relatively
small depth of flow in the inner bend; in that case the role

of the vertical inner wall in the main velocity redistribution
is taken over by the gently sloping bank there (Kalkwijk et al.,
1980). Therefore it will be attempted to formulate a turbulance
model based on the one for infinitely wide streams described in
par. 6.3, i.e. with the turbulence viscosity based on the wver-
tical exchange of momentum.

It is rather obvious in this respect to take the vertical
distribution of the turbulence viscosity the same as in uniform
flow, i.e.

a v 6 (1+z) (6.13)
It should be noted, however, that this distribution is

derived from the more or less arbigrarily adopted logarithmic
distribution of the velocity in uniform rectilinear shear flow.

In a later stage, the vertical distribution of a will be subject

to further investigations (see par. 6.2.2.),

In the shallow flows considered here, turbulence is mainly

generated at the bottom. Therefore it is rather obvious to take

the turbulence viscosity proportional to the bottom friction velo-
city. In case of uniform flow, the normalized bottom friction
velocity u equals Yg/C, so that it seems logical to describe the

normalized turbulence viscosity for channels of finite width by

a = -6 §E u_£(140) (6.14)
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Although, in general, the quantity CuT//g is not equal to

unity, it will be of the order 0(1l), so that the turbulence
viscosity 1s appropriately normalized in this way.

For shallow rectangular channels it seems somewhat overdone

to relate a to the local bottom friction velocity, since

the only regions where the quantity CuT//g will deviate
considerably from unity are the sidewalls regions and there

a turbulence model based on the vertical exchange of momentum

is likely to be wrong. Especially if longitudinal accelerations
occur, such as in curved channels, the non—uniformity of these
accelerations will influence the transverse distribution of the
turbulence viscosity to a much higher extent than the non-—
uniformity of u .. In channels with large scale variations of

the bed level, however, u will vary much stronglier and expression
(6.14) makes more sense. Therefore this expression will be applied
to rectangular channels, as well.

Though the distribution of a according to (6.14) may be not
quite correct in the sidewall regions, it tends to zero at

the sidewalls, which corresponds with the physical idea that

the mixing lenght and the turbulence viscosity should vanish

at the fixed boundaries. On the other hand, this gives rise

to problems when attempting to impose the no-slip conditions
there (see also par. 6.3). Launder et al. (1974) suggest to

cope with these problems by applying a "wall function technique",
i.e. the distribution of the velocity close to a fixed boundary
is given as a function of the distance to that boundary. For
smooth walls the following "universal law of the wall" is often

used (Rastogi et al.; 1978; Rodi, 1978b):

<

T +
Vioes = E-1n(Ey ) (6.15)
, in which: Vres = resultant velocity parallel to the wall,
VT = resultant friction velocity for the wall,
E = roughness parameter (= 9 for smooth walls),
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+ . . .
y = VT§/v = dimensionless wall distance,
; = wall distance,

v = kinematic viscosity of the fluid.

Since in alluvial rivers the bottom uses to be rough, however,
a rough wall equivalent of (6.15) or a generalized form holding
good for smooth and for rough walls is needed. Therefore the

following generalized wall function is adopted:

v v
. T «C vy
Vies = % { 7§-+ 1 + 1n ] } (6.16)
, which corresponds with the logarithmic velocity distribution
(6.8).
Rewriting this expression into the form of (6.15) yields
g -1 (" X ith EX = exp(1 + 59 (6.17)
res = - In E) wi = exp 7§ .
In case of a smooth wall, the Chezy factor can be approximated
by (Chow, 1959)
c v .d
75 % 2.5 1n(3.7 =) (6.18)
, so that
vVd

B =10 — (6.19)

, which is almost in accordance with the value of 9 for E.
The rough wall approximation of the Chezy factor given by

Chow (1959) reads

%g—: 2.5 1n(12.2 §) (6.20)
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» k¥ denoting the Nikuradse sand roughness. In that case
#
B e 338 (6.21)

» 80 that the wall function (6.17) can be elaborated to

"
= L bA
" In(33 Z (6.22)

<

res

The dependence of Vres on the dimensionless wall distance
y/k corresponds with the theory of turbulent boundary layers

along rough flat plates (Hinze, 1975).

In order to have an indication of the performance of this
turbulence model, it is applied to fully-developed flow in

a straight shallow channel. Assuming the logarithmic distri-
bution (6.8) to hold good for the velocity in any vertical,
equations (6.11) and (6.14) can be elaborated to

-2 48 ‘e, Y8 a5 du
0 5 6 vz r(1+z) {1 + T In(1+2)} 85(“ G +

u u (6.23)

~ o

If the velocity has the same vertical distribution through~
out the cross-section, the bed friction will be proportional
to the depth-averaged velocity and for the logarithmic

velocity distribution adopted here, the constant of propor=-

tionality is vg/C. Averaging (6.23) over the depth then yields

-_® 1/gy 3 =3u _ . Y/g-=2
0 33+(1+6KC> ag (U ag) 6KCu (6.24)

The wall function approximations for u near the sidewalls are
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_—M{KC+1+1 (_..___B + )} £ <_B + §
u = " ?QZ n(5y £ or £ < 53
- er kC B B
u o= A {7§-+ 1+ ln(fg - £)} for £ > 53~ 8§

, where § denotes the interval on which the approximation
holds good and GTW is the depth-averaged sidewall friction
velocity.

The system (6.24) through (6.26) contains two unknown
constants, viz. the longitudinal pressure gradient, which
can be determined from the integral condition of continuity,
and the sidewall friction velocity, which must be determined
from an additional condition obtained by assuming that both
equations (6.24) and the wall function approximation (6.25)
or £6.26) hold good in the wall-nearest mesh of the
computational grid. Further details of the solution procedure

are given in Appendix D.

For three cases of fully-developed straight channel flow, the
results of the aforementioned depth-averaged model were
compared with measured data.

Figure 32a shows this comparison for a narrow, smooth-walled
rectangular pipe (Tracy, 1965; height/width = 6.4; C = 60 m%/s);
in figure 32b the computational results are compared with
measured data from a shallow rectangular open channel with
artificially roughened bottom (Rodi, 1978b; depth/width = 1/30;
Cbottom = 21 m%/s); a comparison with measured data from a
shallow rectangular pipe (Builtjes, 1981; height/width = 1/10;
C = 60 m%/s) is given in figure 32c. As was to be expected,
only close to the sidewalls the computed depth-averaged
velocities deviate from the measured ones; the measured velo-
cities are somewhat higher there. An important part of this
deviation, however, will be due to the secondary circulation

caused by the transverse anisotropy of turbulence near the

(6.25)

(6.26)
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sidewalls (Gessner et al., 1965; Tracy, 1965; Gerard, 1978).
This circulation, which cannot be accounted for when applying

a scalar turbulence viscosity, deflects the main flow

isovels towards the corners formed by the bottom and the side-
walls, thus giving rise to higher depth-averaged velocities near
the sidewalls.

In addition to this secondary circulation, there can be two
other causes of deviations between measured and computed
velocities, viz. the similarity can be shown by solving

equation (6.11) for a given turbulence viscosity a and comparing
the resulting distributions of the depth=-averaged velocity and
the bottom shear stress with the one obtained from the corresponding

depth—~averaged equation

0=-2.77L G -5 @ 2 (6.27)
3s 3E .

, which is based on the similarity hypothesis

u(g,z) = u(g) f£(2); a(g,t) = a(g) a'(x) (6.28)

The comparison was made for three different distributions

of a, viz.

1) the parabolic distribution (see also 6.13)

- i B_ _3 _
a = min {-61(1+0), 6(3+ )1 - 2o - 0)
for £ < - gﬁ + 0.5
a = -6r(l+z) for -~ B+ 0.5 <g <P 0.5 (6.29)
3 > 28 <5370 :
a = min {-6z(1+z) 6 - o -2 4
, 7d 7q*
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2) a distribution corresponding with (6.14)

a = u {-67(1+g)} {6.30)

3) the mixing length distribution (6.12) with (cf. Rodi, 1978b)
I = min (k(1+0), xCr+ 8), G- 8), 0.1} (6.31)
m » Zd » zd 3 . L]

In all depth-averaged computations a' was taken parabolic,
according to (6.13),and f was taken logarithmic, accerding

to (6.8).

Figure 33 shows that in the first two cases the depth-averaged
velocities resulting from the depth-averaged computations agree
rather well with the ones resulting from the fully two-dimensional
computations, although the latter are uniform over a larger part
of the cross—section. The mixing length model, however, leads to
important differences between the results of the two computations:
the depth-averaged computation leads to spuriously thick wall
layers (figure 33c).

Rastogi et al. (1978) give a similar comparison between two-
dimensional and depth-averaged computations with the so-called
k-e-model (see also Rodi, 1978b), where the turbulence viscosity
is related to the turbulent kinetic energy and its rate of
dissipation, both of which are solved from transport equations
including convective tramsport, diffusion, production and dis=-
sipation/destruction. For a shallow channel with a very rough
bottom (C = 21 m%/s) and smooth sidewalls, the results of the two
computations appear to be in good agreement (figure 32b). It is
not clear, however, whether this agreement is equally good if the
bottom and the sidewalls are of the same roughness.

Figure 33 also gives a comparison between the bottom shear stress
distributions resulting from the two-dimensional and the depth-
averaged computations. The effect of depth-averaging appears to be
rather small for the turbulence models 1) and 2), but it is much

stronger for the mixing length model. Apart from that, it should

i
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be noted that all distributions are likely to be in error near

the sidewalls, because of the effect of the secondary circulation
there (Leutheusser, 1963; Liggett et al., 1965).

It is concluded from the foregoing that depth-averaging of the
momentum equation will not give rise to serious errors as long

as simple turbulence models like 1) and 2) are applied, but that
more sophisticated turbulence models can lead to erroneous results.
For the two-dimensional versions of the turbulence models considered
here, the distributions of the depth-averaged velocity and the bottom
shear stress hardly differ, as is shown in figure 34. Similarly,
figure 32b shows that the results of the depth-averaged versions

of model 2) and the k-e~model are in good agreement. So for all
turbulence models considered it will be the aforementioned secondary
circulation that is the main cause of the differences between the
measured and the computed depth-averaged velocities represented

in figure 32.

6.5. Turbulence model for curved channel flow

Compared with fully-developed straight channel flow, the flow in
curved channels will be attended with extra strain-rates due to
longitudinal accelerations, streamline curvature and the skewed
velocity field. Although these extra strain-rates may have a
considerable influence on the turbulence properties (Bradshaw,

1976; Hunt et al., 1979), this influence will be small for rather
mildly curved shallow channels. Therefore this influence is left

out of consideration here and, as in case of fully-developed straight
channel flow, the turbulence model will be based on the assumption

of predominant bottom friction. To that end expression (6.14)

is generalized to

_C '
a = 7a UTa (z) (6.32)
, in which UT is the resultant normalized bottom friction

velocity in the vertical considered and a'(g) is a vertical

distribution function, for the present the parabola a'(z) = -6z(1+z).
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The wall function approximation for the resultant velocity Uioe

parallel to the bottom is formulated as

o)

_ 1t ,xC
U ge-144 E-v{7§»+ 1 + In(l+g)} (6.33)
If the bottom is horizontal, this can be split into
Ur kG
ulgi__l+6= — (g * 1+ InGs0)) (6.34)
v
(6.35)

V,g<-1+§= zl-{§§—+ 1+ In(1l+z)}

s U and ev, being the longitudinal and the transverse component
of U_, respectively. These companents of the bottom friction
velocity are determined by the additional conditions arising from
the assumption that the domains of validity of the wall function
approximation and the system of differential equations overlap
(see also Appendix E).

The wall function approximations near the sidewalls can be

treated in a similar way, to yield

u
_ 11 ,xC B
Ueenjoans, T 0 gt L InGgg * O (6.36)

Y11 xC B
w]ii—B/ZdﬂSl = Gp 1 InGgg v O} (6.37)

u
1r ,kC
u{EZB/Zd“Sr = = —E—-{Vg>+ 1 + 1In ?E - )} (6.38)
\
Wfazg/zd-sr s {7_ +1+ InGg - ) (6.39)

, where U and ew , are the longitudinal and the vertical
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of the friction velocity at the left wall and v and ew  are
the corresponding components at the right wall.
Averaging (6.36) and (6.38) over the depth of flow yields the
following generalization of (6.25) and (6.26):

u SIS e o)
’5573/2d+51 < Vg 7d

u
- Ty kC B
U}Ezﬁ/2d~5r == {7§-+ 1+ ln(ig'" £)}

The depth~averaged wall friction velocities ETl and arr are
determined from overlap conditions, in a similar way as in the
case of straight channel flow discussed before.

The wall function approximations used for the velocities
parallel to the fixed boundaries have implications for the
velocities normal to these boundaries, as well. The distri-
bution of the vertical velocity component w near the bottom,
for instance, is determined by the equation of continuity and

the wall function approximations (6.34) and (6.35),yielding

ov Ju

LSy v D) O ¢ 1n(en)]

1
v Gy p

Him

Ylge=148

Similarly, the radial velocity component near the sidewalls

is given by

du ow
L1 .1 "7 tl, B kC B
Vlee-B/2ars, © Tk G35 )Gt B g InGg + O
du ow
I T S 5 try B xC B _
V'EZ.B/Zd—ér e Gyt g T D g InGg - O

The shear stresses at the fixed boundaries are related to the

wall friction velocities through the definition

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)




111

Lo, *
u =frreS]2 sign(r, ) (6.45)7)
res

On the other hand, the shear stress components are related
to the corresponding component of the rate of strain through

the Boussinesq-hypothesis. The bottom shear stress components

Tb¢ and ETbE, for instance, follow from

. ¢ du . a 3v
T = lim —— >~ T = lim —— ;— (6.46)
be r4-1 Reo CRS b ry-1 Reo 3L

Making use of (6.32), (6.34) and (6.35), these expressions

can be elaborated to

2
= UTuT, T = UTVT , whence Ty = UT (for UT > 0) (6.47)

Tb¢ bg res

, which 1is consistent with (6.45)

Similarly, the shear stresses at the sidewalls are give by

. a Jdu
T = lim — o = }U fu 5
14 £4-B/2d eq £ 177l
(6.48)
Q 9w
T,, = lim = ==y (w
1o gy-p/a Re P8 T
Tr¢ = lim . %z = } Tr, Tr;
£48/2d4 %0
(6.49)
t = lim =2 2% lu__|w
rg £4B/2d eq g Tr'oTY

Both (6.48) and (6.49) are consistent with (6.45).

6.6. Sensitivity analysis for the turbulence model

The turbulence model described in the foregoing is based

*) Here t denotes the shear stress normalized by sz.
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on a considerable number of hypotheses and assumptions. Although
the verification of the two basic hypotheses, the Boussinesq
hypothesis and the mixing length hypothesis, would be most inter-
esting for the present complicated flow case, their applicability
is left out of consideration here (see, for instance: Bradshaw,
1976 and Hunt et al., 1979). The various assumptions concerning
the distribution of the turbulence viscosity, however, will be
subject to a closer investigation and the influence of the overall
mean value and the vertical and horizontal distributions of the
turbulence viscosity on various aspects of the flow will be
analysed. For this analysis the differential equations and solution

procedures described in chapter 7 will be utilized.

6.6.1. Influence of the overall mean value of the turbulence

viscosity

As was stated in par. 6.3, the parabolic distribution of the tur-
bulence viscosity in uniform rectilinear shear flow corresponds

with an effective Reynolds number

_6¢C
Reo = »” 73— (6.50)
and the overall mean value of the turbulence viscosity is then
given by
AO = 0.067 pv. d (6.51)

» where v =V Yg/C is the bottom friction velocity. In the
literature somewhat different values of the constant of pro-
portionality in (6.51) are suggested: Engelund (1964) gives a
value of 0.077 and Rastogi et al. (1978) use 0.0765 in their
depth—-averaged version of the k-e-model. These values, however,
are based on experimental data for uniform flow in closed
channels, so they will only hold good if the influence of the
water surface on the turbulence is negligible. A comparison of

the turbulence characteristics measured in uniform open channel
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flow (Nakagawa et al., 1975) with those for a closed channel
(Laufer, 1951) shows that the water surface influences tur-—
bulence, indeed (see also Rodi, l978b)*).

Until recently, the turbulence viscosity used to be determined
experimentally from the vertical distributions of the turbulence-
averaged velocity v, and the shear stress L in uniform flow,

0
making use of the definition

TSZ
A =22 (6.52)

In uniform open channel flow Tez varies linearly from its
maximum at the bottom to zero at the surface. Adopting Chezy's

law, this yields

;g z

A =-8. Y 2 (6.53)
t C2 d BVO
9z

The vertical distribution of Vs and hence the vertical
derivative of vy in (6.52), is mostly approximated by fitting

a certain type of curve (logarithmic, for instance) to the
measured data.

As will be shown in par. 6.6.2, the distribution of the velo-
city in the upper parts of the vertical is hardly influenced

by the distribution of the turbulence viscosity there. Inversely,
this implies that the turbulence viscosity distribution in this
region will be quite sensitive to the distribution curve adepted
as an approximation of the measured velocities. Hence the depth-

averaged turbulence viscosity will also be strongly dependent on

This could explain the velocity reduction near the water surface
often observed in open channel flow, even if the channel is straight
and shallow (see, for instance: De Vriend et al., 1977 & 1978, or

De Vriend, 1979b & 1980b).
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this approximation and therefore the aforementioned method of
experimental determination of At can be expected to yield a wide
variety of depth-averaged values.
Rozovskii (1961) gives a review of the experimental values of Kt
obtained in this way. Grouped according to the approximation of
the measured velocity distribution:
the Boussinesq-Basin parabola, with A, constant in a vertical
and a finite slip-velocity at the bottom (cf. Engelund, 1964),
which leads to values of the constant of proportionality in
(6.46) between 0.065 and 0.071 (Engelund: 0.077);
the elliptic distribution (Karaushev, 1946), yielding values

of the constant that depend on C:

A
t

ov*d

= (1.9 + 0.7 %g)‘l for 3 < % < 21 (6.54)

, 8o that for C = 60 m%/s a value of 0.065 is found;

the logarithmic distribution, for which the constant equals

/6, as was shown in the foregoing; for x=0.4, this yields a
value of 0.067, but for higher values of k (Rastogi et al. (1978)
use 0.42; Rodi (1978b) suggests 0.435; Rozovskii (1961) suggests
values as large as 0.5), the constant increases in proportion;
the power law distribution; the 1/7th~power law, for instance,
yields a value of 1.15/g/C for the constant, i.e. 0.060 for

C = 60 m%/s.

Another class of experiments from which At can be determined
concerns the dispersion of suspended matter in uniform straight
channel flow.

This indirect determination of A is based on the so-called
Reynolds—analogy (see Hinze, 1975), which states that in turbulent
flow the transport processes for mass and momentum are analoguous.
At the experiments reported by Jobson et al., (1970), dye was
injected at the free surface of fully-developed straight channel
flow. From the rate of dispersion of this dye the transfer coeffi-

cient was derived. The observed values of this coefficient differ
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only a few per cent from those predicted by equation (6.51).
Similar experiments on heat transfer in an open channel (Ueda

et al., 1977) suggest about 107 smaller values of the tranmsfer
coefficient.

In addition, experiments were made with suspensions of fine-
grained sand (Vanoni, 1944; Jobson et al., 1970; Coleman, 1970),
but then the dispersion process is complicated by the different
densities of the fluid and the suspended particles. Hence the
values of Kt obtained from these experiments are not quite
reliable.

Recent advances in measuring techniques (hot film, laser-doppler
anemometry) allow for the turbulent velocity fluctuations to be
measured. Hence At can be determined from turbulence quantities,
using, for instance, the basic relation of the k-e~model (Launder

et al.,, 1972, 1978b)
(6.55)

, in which kt denotes the local turbulent kinetic energy, €
the rate of energy dissipation and ¢, @ known constant of
proportionality.

Equation (6.55) was used to derive At from the measured distri-

butions of kt and e_ in uniform open channel flow presented by

t
Nakagawa et al. (1975).

The resulting values of At are so widely scattered, however,
that it is impossible to fit a reliable distribution curve to
the measured data (see figure 35). The mean value of At lies
between 0.06 and 0.07, but regarding the large scatter in the
data, a more exact figure cannot be given. This shows that
determining At from turbulence data requires much higher measu-
ring accuracies in order to provide reliable information.

The foregoing leads to the conclusion that a great deal of
uncertainty exists about the value of the constant of propor-—

tionality in (6.51), even for uniform rectilinear shear flow.
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For curved channel flow this uncertainty is even stronger, as
it is hardly known how turbulence is affected by the extra

strain rates due to longitudinal accelerations, streamline

curvature and the skewed velocity field (see Bradshaw, 1976).
Therefore it is worthwhile to investigate the sensitivity of
a mathematical model as described in chapter 7 to the overall
mean turbulence viscosity. The overall mean turbulence visco-
sity is incorporated in the effective Reynolds number, which

can be generalized to
Re, = xe and hence A = E-pv d
0 ¥ 7Vg vy U

The influence of the constant y is to be investigated now.
As the mixing length close to the bottom will be proportional

to the bottom distance (Prandtl, 1925; Schlichting, 1951).

Zm = k(1+2)

the vertical distribution of the turbulence viscosity near

the bottom must be (see (6.4))
a = y(l+g)

Therefore the generalization of ReO and AO to (6.56) is
combined with a correction of the parabolic distribution of

a in order to satisfy (6.57) and (6.58):
C
2= = yg U (vn) {12(1+0) - y(1+20)}

For y=6 this reduces to the parabola —-67(1+z), for smaller y
the distribution is slightly deformated, the maximum shifting
somewhat upwards and increasing slightly (figure 36a).

Figure 36 shows how a variation of y between 0.4 and 6.0

(i.e. a variation of k/y between 1.0 and 0.067) influences

(6.56)

(6.57)

(6.58)

(6.59)
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various aspects of curved channel flow. The vertical distribution
of the main velocity and the stream function of the secondary flow
(figure 36b) are hardly affected and no more is the main bed shear
stress factor ki (= Ty Cz/(gﬁz)), as is shown by figure 36c. The
secondary bed shear stfess factor kmks’ however, increases con-—
siderably as y decreases (figure 36d4) and the intensity of the
fully~developed secondary flow, @ReO/a, as well as the secondary
flow convection factor E;;/Gz in fully-developed curved flow de-
crease fairly strongly with decreasing vy (figures 36e and 36f).
These results lead to the conclusion that quantities related to
the main flow are hardly influenced by Yy, whereas quantities
related to the secondary flow are much more sensitive to this

factor.

6.6.2. Influence of the vertical distribution of the turbulence

viscosity

As was shown in par. 6.3, a purely logarithmic velocity distribution
will correspond with a parabolic distribution of the turbulence
viscosity, at least in uniform rectilinear shear flow. If turbulence
is described by the k-c¢-model, however, as was done with success

in various fully three~dimensional computations of turbulent flow

in curved channels (Pratap, 1975; Pratap et al., 1975; Leschziner

et al., 1978 and 1979), a quite different turbulence viscosity distri-
bution is found (see figure 37): near the bottom it closely agrees
with the parabola but in the upper half of the vertical a remains
almost constant rather than descreasing to zero at the surface,
Nonetheless, the resulting velocity distribution hardly differs

from the logarithmic one, not even in the upper half of the vertical
{figure 37). Hence it is concluded that the distribution of the tur-
bulence viscosity in the upper half of the vertical is rather un-
important to the prediction of uniform rectilinear shear flow.
Inversely, the turbulence viscosity distribution will be quite
sensitive to changes in the velocity distribution, so that it is
rather difficult to determine At from velocity measurements (see
par. 6.6.1). This explains why some experiments reported in the

literature seem to provide evidence in favour of the parabolic
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distribution (Vanoni, 1944; Jobson et al., 1970), whereas

others seem to corroborate the more uniform distribution
according to the k-e~model (Coleman, 1970). On the basis of
physical arguments, some reduction of the turbulence visco-
sity is to be expected near the water surface (cf. Rodi, 1978b),
but there is not enough experimental evidence to quantify this
reduction (see Nakagawa et al., 1975, and the elaboration of
their data represented in figure 34).

In view of this doubt about the vertical distribution of the
turbulence viscosity, even in the rather simple case of uniform
rectilinear shear flow, the influence of this distribution on
curved flow needs to be established. To that end, three different
distributions are considered, each of them with the same slope
at the bottom (cf. expression 6.58) and with y=5:

1) the modified parabolic distribution (6.59):

a' = - (1+g) (7+27) (6.60)

2) an approximation of the k-e~distribution shown in figure 37:

a' = %(1+(;)(852—35§+2) for ¢ < -0.5
(6.61)
a' = %% for z > -0.5
3) a uniform distribution in the upper part of the vertical
combined with a linearly decreasing part near the bottom
a' = 5(1+g) for ¢ < -0.775
(6.62)
a' = 1.127 for ¢ > -0.775

The vertical distribution functions f, g and %% and the most
important constants in the depth-averaged equations are re-
presented in figures 38 and 39 for each of these distributions.

Figures 38a through 38d show that the vertical distributions




119

of the main and secondary velocity components are influenced
only slightly by the distribution of g. The coefficients in
the depth—averaged main flow equations (7.25) and (7.26) re~
presented in figures 3%9a through 39d, are hardly influenced,
either, and no more is the secondary bed shear stress factor
kmks (figure 39g). The coefficients in the depth-averaged
stream function equation (7.39), however, are influenced to

a considerably higher extent, as is shown by figures 3% and
39f as well as by the secondary flow intensity in fully-
developed curved flow represented in figure 39h.

The same must be stated as regards the secondary flow convection
factor G;;/GZ, which is shown in figure 39i.

The only quantity for which the differences exceed 15% is the
factor 5572@ (figure 39f), figuring in a group of higher order
terms in the depth-averaged stream function equation (7.39).
In order to establish the influence of the great difference
between the values of this factor for the distributions (6.60)
and (6.61), the complete turbulent flow model described in
chapter 7 was applied to the LFM-flume (see chapter 9) with
either distribution of a'. A comparison of the results shown
in figure 40 makes clear that, although the flume is rather
sharply curved, the depth-averaged main velocity is hardly in-
fluenced and that the influence on the depth-averaged stream
function of the secondary flow nowhere exceeds 107.

The foregoing leads to the conclusion that the distribution

of the turbulence viscosity in the upper part of the vertical
hardly influences the main flow, whereas its influence on the
secondary flow is rather small.

The secondary flow intensity and the convective effect of the
secondary flow on the main flow tend to increase as the turbulence

viscosity becomes more uniform in the upper part of the vertical.

6.6.3. Influence of the horizontal distribution of the turbulence

viscosity

The turbulence viscosity in the present model is related more or less

arbitrarily to the local bottom friction velocity. As was stated in
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par. 6.2 and 6.3, this will be approximately correct in the central
region of straight or mildly curved shallow channels, where the
velocity gradients, and hence the exchange of momentum due to tur-—
bulence, are mainly vertical. Near the sidewalls and in sharply
curved flow, however, where important extra strain rates occur,
this turbulence model will give rigse to errors in the predicted
velocities. In general, the extra strain rates due to the side-
walls tend to increase the local turbulence viscosity (cf. figures
33b and 33c). This effect is felt mainly in a, as the vertical
distribution of g remains practically unaltered.

In straight channel flow, the effect of local errors in a near

the sidewalls will be restricted to the sidewall regions. In

curved channels, however, in which there is an important transverse
exchange of momentum throughout the cross—section, this effect
could extend over a much larger region. Therefore, the influence

of the horizontal distribution of the turbulence viscosity in the
sidewall regions was subject to a seperate investigation.

To that end, the depth-averaged main velocity in the LFM—flume

was computed with three different, more or less arbitrary

distributions of g viz.
1) the present model (g ~ UT)
2) a corresponding with the parabolic distribution (6.29)

3) @ = 1 with linear wall layers, i.e.

]

min {1, 6(33 + &), 637 - £)) (6.63)

2
i

Figure 41 shows that there are considerable differences

between the resulting distributions of u, but that they are
restricted to the regions close to the sidewalls. Hence it is
concluded that, especially near the sidewalls, the horizontal
distribution of the turbulence viscosity needs special attention
if local errors have to be avoided. If a detailed description

of the velocity in the sidewalls regions is not wanted, however,
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the accurate modelling of turbulence is rather unimportant there,

either.

6.7. Discussion

The foregoing paragraphs make clear that, although various more

or less fundamental objections can be made against the simple
turbulence model presented in par. 6.5, this model seems acceptable
for the present purpose as long as the Boussinesq hypothesis holds
good. The assumed overall mean value of the turbulence viscosity

was shown to have a rather strong effect on the secondary flow and
the secondary bed shear stress (par. 6.6.1), whereas its horizon-
tal distribution in the sidewall regions appeared to be rather
important to the depth-averaged main velocity distribution there
(par. 6.6.3). The assumed vertical distribution of the turbulence
viscosity, however, appeared to be much less critical, provided

that near the bottom the linear distribution (6.58) is approached.
Therefore future research on eddy viscosity models for turbulent
flow in curved shallow channels should be concentrated on the

first two aspects.

Tt should be noted that adopting the Boussinesq hypothesis implies
that the prediction of various phenomena, such as the secondary

flow due to the anisotropy of turbulence and the sharp velocity
reduction near the water surface found in many experiments, is
excluded in advance. For the prediction of the depth-averaged

main velocity this will be of minor importance, as excellent pre-
dictions, even for sharply curved flows, have been obtained on the
basis of the Boussinesq hypothesis (Pratap, 1975; Leschziner et al.,
1978 & 1979). The predictions of the secondary flow and the vertical
distribution of the main flow, however, can be influenced much
stronglier by this hypothesis. In straight rectangular channels, the
secondary circulation in the sidewall regions caused by the anisotropy
of turbulence there (see par. 6.4) cannot be predicted and neither
can the corresponding deformation of distributions of the main velo-
city (increase in the corners, reduction near the surface) and the
bottom shear stress (increase near the sidewalls). Though in bends

the source of this circulation exists as well, the circulation itself
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is mostly dominated by the secondary flow due to curvature (see
Shukry, 1949). The latter can be appropriately predicted by a

model based on the Boussinesq hypothesis, so that the deformations
of the velocity and the bottom shear stress distributions in a

bend are likely to be described better than in a straight chanmnel.
Furthermore, the presence of turbulence anisotropy as a source

of secondary flow can explain why in experiments (De Vriend et al.,
1977; De Vriend, 1979b & 1981b) a reverse secondary circulation

is found in the upper part of the outer wall region at considerably
smaller effective Dean numbers than in the mathematical predictions,
either laminar (see par. 3.7) or turbulent (De Vriend et al., 1980a).
It is in the upper part of the outer wall region that the two types
of secondary flow are counteracting, in such a way that the reverse
circulation comes sooner into existence.

Another phenomenon that camnot be predicted when making use of

the Boussinesq hypothesis is the velocity reduction near the surface,
which was observed in many experiments, both in straight and in
curved channels (Chow, 1959; De Vriend et al., 1977 & 1978; De
Vriend, 1979b & 1980b).

It is mostly attributed to the aforementioned secondary circulation
due to the anisotropy of turbulence (Rouse, 1961; Gessner et al.,
1965; Gerard, 1978), but if this were the only cause, the velocity
in a shallow straight channel should hardly be reduced at the
surface in the central part of the cross-section, the secondary
flow being concentrated near the sidewalls (see also: Tracy, 1965).
This is in conflict, however, with observations in a very shallow
open channel (De Vriend et al., 1977 & 1978), where considerable
velocity reductions at the surface were found everywhere in the
flume. On the other hand the secondary flow due to curvature can
also give rise to main velocity reductions in the upper part of the
vertical (see chapter 3), but these are usually much smaller and
spread over a much thicker layer than the reductions meant here,

for which no satisfactory explanation could be given so far.
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7. Computation of turbulent flow in curved rectangular channels

7.1. Objective and approach

Having formulated a (tentative) turbulence model (see chapter 6),
the most logical continuation of the mathematical modelling

would be to describe fully-developed turbulent flow in curved
rectangular channels. On the analogy of chapters 3 and 4, an
extensive mathematical model, solving the complete system of
turbulence-averaged equations, could be used as a basis and as

a reference for simplified computation methods. In contrast

with laminar flow, however, even a model solving the complete
system of equations for turbulent flow can only be approximative,
because of the approximative character of the turbulence model.

In addition, the performance of such a model can hardly be tested,
by lack of experimental data or more sophisticated mathematical
models that could serve as a reference. Consequently, an extensive
model of fully-developed turbulent flow is not likely to provide
sufficient reliable information to make it worth developing here.
Instead of deriving a simplified computational procedure from a
model of fully-developed turbulent flow, the basic simplifications
that appeared to hold good for laminar flow (see chapter 4) will

be supposed applicable to turbulent flow, as well. Apart from
neglecting the transverse inertia of the secondary flow, this
implies in the first place that a similarity hypothesis is made

for the velocity distribution in a cross-section. Several experi-
ments on turbulent flow in curved shallow channels (Rozovskii,
1961; De Vriend et al., 1977 & 1978) seem to justify this hypothesis,
but others (Yen, 1965; Siebert et al., 1975; De Vriend, 1979b) make
clear that, especially near the sidewalls, caution should be ex-
ercised as soon as the effects of curvature become important.
Besides, it was shown in par. 6.4 that for some turbulence models
the similarity hypothesis can give rise to considerable computational
errors in the sidewalls regions. ¥or the turbulence model described
in par. 6.5, however, these errors appeared to be of minor importance.
In order to avoid complications due to a non-uniform shape of the

cross-section, the computational procedure will be outlined here for
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rectangular channels with a rigid-1id approximation for the water
surface. The most important simplifying assumptions will be
verified in the same way as it was done for laminar flow in
chapter 5. Besides, a global comparison with measured data will

be made in order to test the turbulence model.

7.2, Simplification of the mathematical system

The system of balance equations for mass and momentum, given in
chapter 2, will be simplified using the experience gained in the
development of the laminar flow model (see chapter 5). Firstly,
the flow is split up into a main and a secondary part, according
to the definition in par. 5.2, so that the equations of continuity
for the main and the secondary flow can be separated.

In addition, wll terms that are an order O(ez) smaller than the
leading terms of the same type in the same equation are disregarded,
and so are the transverse inertia terms in the secondary flow
equations, which have proved negligible in the laminar flow case
(chapter 3).

The resulting system of equations reads

1 8um avm £
;——‘b—+—a-é——+}—vm=0 (7.1)
BVS c Bws
% e w0 72
um Bum aum c aum Bum .
eReg (35 YV 3E T r Vmm T Vs 3E T Vs 5z Tt VsUw T
Ju du

-l 2 %a  m_ &g da_m

ss T VU e Gy T T W) T e ag (7.3)
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7.3. Interpretation of the simplified equations

In order to galn some more insight into the system (7.1)
through (7.5) and to facilitate its physical interpretation,
it is transformed to the stream—oriented coordinate system
(n,s,g) represented in figure 23. The transformation, which
ig quite similar to the one applied to the laminar flow

equations in par. 5.4, leads to
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Apart from the additional terms arising from the spatial

variations of the turbulence viscosity, these equations are

very similar to the laminar flow equations (5.15) through (5.19).
The only important differences are the spatial variations of a

and the replacement of Re by Reo. Once again, this suggests that,
apart from quantitative differences, the convective redistribution
of the main velocity in turbulent flow through curved channels

is characterized by ReO rather than Re. This becomes even more
evident when analysing the mechanism of the main velocity redistri-
bution under the influence of secondary flow convection. Supposing

lateral diffusion to be of minor importance (cf. chapter 4) and
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adopting the similarity hypothesis (5.20) for the main flow,

the streamwise momentum equation (7.8) can be averaged over the

depth of flow

to yield

;7 _ Bﬁm a&m 3 ¢"Rey
) Uy 55 T EReg U F g+ (a5 r==1 p vl *
* €Rey w BC} U, 55 (7.11)
Together with the truncated transverse momentum equation
- -
2 m . _9op
e"Rey o £ = - (7.12)
s
this equation can be reduced to
cRe ?‘ f{-’ﬁ+{( 9f) +eReW§£}ZL=—§§— (7.13)
07 "nds 2577 =1 0V 30" Um ds '
holding along the characteristies
&y @D (7.14)
ds s

Equations (7.13) and (7.14) and their laminar flow counterparts

(5.23) and (5.

of Re by Reo,
of a. For the
for instance,
mildly curved
1973 & 1977)

22) are very much alike. Apart from the replacement
all differences are due to the spétial variations
turbulence model given in par. 6.5, this implies,
that far from the sidewalls in a very shallow and

channel (cf. Rozovskii, 1961 and De Vriend,

rather than %

7.15)
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Bf oY /g
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In spite of these quantitative differences, however, the main
and secondary flow patterns are globally the same for either
case, so that the mechanism of the main velocity redistribution
will be essentially the same, as well. In the first part of a
bend downstream of a straight channel section, the depth-
averaged main velocity distribution will be skewed inwards as

a consequence of the longitudinal pressure gradients*). Once
the secondary circulation comes into existence, &m undergoes

a local reduction near the inner wall, which is caused by the
combined convective effects of Vg and W When proceeding
through the bend, the region influenced by this velocity reduc-
tion is gradually extended outwards by transverse convection,
whereas the magnitude of the reduction becomes smaller as the
distance to the inner wall increases. This leads to a gradual
"inversion" of the depth-averaged velocity distribution from
skewed inwards in the first part of the bend to almost uniform

or even skewed outwards in the last part of it.

7.4. Main flow computation step

On the basis of the experience gained for laminar flow (chapter
5), the computational procedure for turbulent flow in curved
shallow channels is split up into two subsequent steps, viz. a
main flow computation step and a bottom shear stress computation

step. The former aims at the calculation of the depth-averaged

*) cf. the "potential flow'" effect in laminar flow (see par. 3.6).
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main velocity, the latter is meant for a more accurate deter-
mination of the vertical distribution of the main velocity,
the secondary flow and the magnitude and direction of the
bottom shear stress. The most important difference between

the two steps is the similarity hypothesis, which is applied
in a rather rigorous form ((5.24) and (5.25)) in the main flow
computation step and in a more generalized form (see (5.36))
in the bottom shear stress computation step.

The outlines of the main flow computation step are the same

as in the laminar flow model: the depth—averaged main velocity
and pressure fields, the secondary flow intensity and the
vertical distributions of the main and the secondary flow are
computed alternately in an iterative procedure. In the
following the computation of each of these quantities will be
discussed in further detail and the iterative solution procedure

will be summarized.

7.4.1., Vertical distribution of the main velocity

Adopting the similarity approximations (5.24) and (5.25) for the
main and the secondary flow and expression (6.32) for the turbu-
lence viscosity, the longitudinal momentum equation (7.3) can be

elaborated to

CU 2 cu -
-t 3 Ff T da' _ u 3y af
R 7+ g5 T Ko g o) 5t
i} udw, ;ou €5
eReO ) + v 3E + uv) fz +
vl ere L8, 2 2 +{7——U 2 IR
0r “3% r 2 r 3&
3U -
C T _3_2__5— 19 *
* Vg 3F ru>}a’]f ;g{% (7.18)™)

% , . . .
) As in this equation terms being an order 0(52) smaller than the
leading terms of the same type have been neglected, UT can be

replaced by u_.
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This equation becomes linear in f if the main flow inertia term

ig linearized by
2 A%
iy (7.19)

s % denoting an estimate of f (for example: the distribution

zound in the foregoing iteration step). If u, UT(uT), v, ¥,

f» g and the longitudinal pressure gradient are known, equation
(7.18) can be considered as an ordinary second-order linear
differential equation in r, from which f(¢) can be solved if an
appropriate set of boundary conditons is given.

The boundary conditions that are relevant here are the shear
stress condition at the surface (see (2.36)) and the wall function

approximation (6.33) near the bottom. They yield

a’ %——{ =0 at z =0 (7.20)
and
;= km {1+ é% + é% In(l+g)} (7.21)

on the bottom—nearest mesh of the computational grid. The
constant km in (7.21) is related to the ratio of the bottom

friction velocity and the depth—averaged velocity through

=

¢ 'm (7.22)
- .

_C
Ky = Vg

C(I

<t

It is determined from the additional condition provided by
assuming that both the longitudinal momentum equation (7.18)
and the wall function approximation (7.21) hold good on the
bottom-nearest mesh. For further details reference is made
to Appendix E.

Making use of (7.22), which for known km expresses u_ and v,

-
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in terms of u and v, respectively, equation (7.18) can be reformu-

lated as
CRECRIE O CUNRY TR
m SCZ m 3z £ e0 r 3% g 3z
ope @B, LB eg ¥ 23 51, eq
aReO (r 5% + v y: + = uv) Ff + {gReO = (ag + = u) 5% +
o - 5%, 5u 3u 1 3p
B o i 1 B
vk sl | € e ¢ 7T 1 7.2

, where ﬁm denotes a known estimate of km. Equation (7.23) is
the one that is actually solved in the model.

Once the constant km is known, the components of the bottom
shear stress due to the main flow follow from (7.22) and the

definitions of u and v Hence

o

(7.24)

-
=3
<1

Tb¢ = =5 km u and Tbgm =

quQ
)

7.4.2. Depth-averaged main velocity field

Making use of the similarity approximations (5.24) and (5.25),
the tangential and radial momentum equations (7.3) and (7.4) can

be averaged over the depth of flow, to yield

Z wdu, i, ey 2, 2hg b du,e
eRe) f2 & BtV T uv) + eRey -7 5T T (85 + = u) +
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, in which the "other terms'" are of the order O(ez, 53Reg)
and concern the secondary flow. These terms are disregarded
in the main flow computation.

For the logarithmic distribution (7.21) of f near the bottom,
in these equations becomes

v 3
the factor (a 3C) =1

= e g_
1 =k T 2 = kReg & (7.27)

(a' a{)

Equations (7,25) and (7.26) and the depth—averaged equation

of continuity

|
R =]
@l
e i
= jm

(7.28)
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form a system of three partial differential equations, from
which the three unknowns u, v and 5 can be solved if an appro-
priate set of boundary conditions is given.

The treatment of u and v in the vicinity of the sidewalls was
discussed in par. 6.5. Appendix F gives further details of
these sidewalls approximations and their incorporation in the

model.
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The inflow and outflow conditions to be imposed depend on the
method of solution (stream function/vorticity, parabolic,
partially-parabolic; see Appendix C), but in any case the
distribution of the longitudinal velocity at the inflow boundary
must be given. Though any distribution that satisfies the side-
wall conditioms can be imposed, the velocity distribution in
the equivalent fully-developed straight channel is chosen here,
i.e. the inflow section is assumed to be preceded by an
infinitely long straight channel of the same cross-sectional
configuration and with the same roughnessas of bottom and side-
walls. The computation of this fully-developed straight channel

flow is described in Appendix D.

Like in the laminar flow model, the computation of the depth-
averaged main velocity and pressure fields is the most difficult
and time-consuming part of the solution procedure. In order to
find an efficient computation method, a turbulent flow trans-
cription has been made of the methods discussed in Appendix C,
viz. the stream function/vorticity method, the parabolic and
partially-parabolic modes of Spalding's method and the
'simple—channel’' method.

For the stream function/vorticity method the problem of convergence,
which was already encountered in the laminar flow case (De Vriend,
1978b), becomes acute in case of turbulent flow: convergence

turns out to be very poor then and hence the computations are
very expensive or even fail. This deterioration of convergence
must probably be attributed to the extra degree of freedom in the
sidewall conditions of u, which depend on the solution in the
other parts of the cross—section instead of giving a strict pres-
cription of u.

The other three methods are indentical in their treatment of the
longitudinal momentum equation. Since the sidewall boundary con-
ditions related to this equation form the only essential difference
between the laminar and turbulent flow versions of these models,
their relative efficiencies in case of turbulent flow are almost

the same as indicated in Appendix C. Hence the parabolic mode of
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Spalding's method is by far the most efficient, but also the
most simplified. The efficiencies and the accuracies of the
partially-parabolic Spalding-method and the simple-channel
method are not far apart. In order to be able to compare
results of parabolic and partially-parabolic computations,

the two modes of Spalding's method will be applied henceforth.

7.4.3. Vertical distribution of the secondary flow

As in the laminar flor model, a stream function of the secondary
flow is defined by (5.25). The turbulent flow version of the
stream function equation is obtained by eliminating the pressure
from the transverse and vertical momentum equations (7.4) and

(7.5) (see also De Vriend, 1979b). The resulting equation is

rather complicated and needs some further simplification in

order to be manageable.

On the basis of the experience gained from the laminar flow

model (chapter 5), the stream function equation is simplified at
the following points:

the transverse inertia of the secondary flow is disregarded,

the vertical distribution function g is assumed independent of £,
the vertical distribution function is assumed weakly dependent on
¢, i.e. the ¢-derivatives of g are disregarded in the stream
function equation.

In addition, only the leading terms in the equation are retained,
so even the terms with %—are omitted. Then the stream function

equation becomes (cf. equation (5.40)):
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For given u, v, a and f, this equation could be used to
determine g. As was shown for the laminar flow model, however,
the inconsistency of retaining the streamwise inertia terms

for ¥ and omitting them for g gives rise to computational
trouble. Therefore, the streamwise inertia terms for @ and

g are disregarded here (see also par. 5.7).

Since g has been assumed independent of £, it can be determined
in the channel axis, where the £-derivatives of { are negligible.
In addition, the terms with Jm are assumed to be of minor impor-—
tance as a source of secondary flow, at least in the main flow

computation step. Then equation (7.29) reduces to

T ri’
Vg (e D = s (7.30)
3T z s

[*%4

It should be pointed out that in the actual model y is not

solved from this equation, but from

2 2

_3_5 (o' .3_%) - ¢ éﬁz_ (7.31)
E14

9L 3L

in which ¢ is adjusted in such a way, that g = 1 in each
iteration step of the main flow computation (see also

Appendix G).

The boundary conditions at the surface are the same as

for laminar flow, viz.

g=0 and a' 2Z2=0 at <=0 (7.32)
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The conditions at the bottom are replaced by the wall function
approximations given in par. 6.5. If EVTS denotes the part of
the transverse component of the bottom friction velocity due
to the secondary flow, the components of this friction velocity

can be written as (see also (7.22))
Vg =
v =k —=2vV+yv and u =k T u (7.33)

Then the wall function approximations for the secondary flow
can be derived from (6.34), (6.35) and (6.42), in combination
with the depth—-averaged equation of continuity (7.28), to yield

v
_ 18 (xC
Ve T {7g-+ 1 + In(l+z)} for <t (7.34)
1 ast € kC
We s o gt g v QD) (TS In(en)} for ©o<qy (7.35)
The wall function approximation for ¢ to be derived from
these expressions reads
rst kC
bo=- Te, (+) o+ In(l+0)}  for ¢ <z, (7.36)
Hence the wall function for g can be written as
g =k (1+g) {1 + f& In(l+g)} for [ <z (7.37)
s «C -1
, in which the constant ks is related to the ratio of Vg
and $ through
rv
ko= - o 18 (7.38)
& YRe
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It is determined by assuming that both equation (7.30) and
wall function (7.37) hold good on the bottom—-nearest mesh
of the computational grid. Appendix G gives further details

of the solution procedure.

7.4.4, Depth—averaged stream function of the secondary flow

For aq = kma a' (cf. equation (6.32)) the depth-averaged version

of equation (7.29) can be elaborated to (see De Vriend, 1979a)

oE sg”  ag” 8k 3E
- - - R - - -
co2um g ofa oo, ,mam, g,
EBE 2 2o ) 9E BE 3,2
eRe - 2= = = -
—o R s o 2%, aula 8V 3
* Cf2$ " (}(¥'a¢ YV T3t Gr i t3E e 3e
m - 3L
Wb, AU, 3V _ VUL adgy |
Fer Goe*Vart Y Gagw)(f—a%)h:oJ
-2 - 3w -
ru r u m m Ju '
- E;;“lec=0 + ﬁgg’(;‘gg—“ P 569(0 f)iCzO (7.39)

In the main flow computation step the source term with am is
disregarded.

In order to solve 5 from this equation, boundary conditions must
be given at the inflow boundary and at the sidewalls. The inflow
condition for ¥ corresponding with the assumption of fully-

developed straight channel flow at the inflow boundary reads

winflow =0 (7.40)
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The sidewall conditions are provided by the wall function
approximations (6.37), (6.39), (6.43) and (6.44). The
functions (6.43) and (6.44) can be split up into two parts,
one for v_ and one for vs. Near the left wall, for instance,

this leads to

Ju

1 1 B xC B
Tt Gt gt B fer Eog
ow
__ 1% B «C B
Ve T "% ar Gat B gt inGgr ol for £2g

Hence the wall function approximations for § become

w

= Tl B kC B -
Y o= KREO (5&'* £) {7g‘+ ln(ig + £)} for g < El
near the left wall and
rw
= __ _tr B _ xC B _
VT e, (g~ 8 g+ Inlzg - &) for L2 8

near the right wall. The quantities w_y and L in these
expressions are determined by assuming both equation (7.39)
and approximations (7.43) and (7.44) to hold good on the wall-
nearest meshes of the computational grid.

The procudure followed thereby is described in Appendix H.

7.4.5. Iterative solution procedure

The outlines of the iterative solution procedure applied in
the main flow computation step are essentially the same as in
the laminar flow model (see par. 5.6):

la. Estimate the vertical distribution functions f and g by

taking, for instance, the logarithmic distribution for f

f=1+ é% + é% In(l+z)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)




139

and solving g from equation (7.31) or evaluating the
analytical solution corresponding with (7.45) (see also

De Vriend, 1976 & 1977)

/g -
g=c {~ 2:Fl - ;E-ch + 2(1 - K202)(1+g) In{l+g) +

+ {% (1+1) 1n2(1+c>} (7.46)

8

g g
PR )
Kk C

with ¢
2 -5

c 1n(1+(;) * ~i- 7§ )

F,. = [ . dz (z" = e

_1+C*

z 2
In“(14) dc

FZ =/ * zZ

-1+C

1b. Estimate the depth-averaged stream function of the secondary
flow by taking e 0, for instance.

2. Determine u, v and 5 on the basis of equations (7.25), (7.26)
and (7.28), using one of the computation methods described
in Appendix C, except for the stream function/vorticity
method (see also Appendix F).

3. Calculate the local streamline curvatures using (5.31) and

(5.32).

Solve ¥ from equation (7.39) as indicated in Appendix H,

Solve f from equation (7.23) as indicated in Appendix E.

Solve g from equation (7.31) as indicated in Appendix G.

~ O U
. . . .

Repeat the procedure from 2 on, until a termination criterion
such as (5.35) is satisfied.
In order to speed up convergence, underrelaxation rules such as

(4.37) can be applied in any of the elements 2, 4, 5 and 6.
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7.5. Bottom shear stress computation step

The normalized bottom shear stress components Tb¢ and ETbE are

given by (see also (7.24) and (7.38))

-8 2=2 -8 2 == _ g -
Tb¢ C2 kmu and Tbg Cz km uv C2 kmks Reo u

= et

(7.47)

These expressions are evaluated using the depth—averaged

main velocities resulting from the main flow computation step.
The friction constants km and ks are determined from extended
calculations of f and g, in which the effect of longitudinal
accelerations of the main flow is taken into account. The
depth-averaged stream function of the secondary flow is

adjusted to the improved distributions of f and g.

Longitudinal accelerations of the main flow give rise to de-
formations of the vertical distribution of the main velocity
(Schlichting, 1951; De Vriend, 1976 & 1977: see also par. 5.7)
and hence to changes in the bottom friction constant km. As

the longitudinal accelerations will be distributed non-

uniformly over a cross—section, however, they can only be
accounted for if f is allowed to vary with g. Therefore, the
generalized similarity hypothesis (6.36) is adopted, i.e. f is
allowed to vary with £ in such a way, that the g-derivatives

of f in the differential equations ave negligible with respect

to the &-derivatives of u.

Strictly speaking, f would then be described by equation (7.23)
in every vertical of the cross—section. When solving f from

this equation, however, the results near the sidewalls are ob-
viously erroneous. Apparently, the longitudinal momentum
equation should be solved there as a whole rather than being
split up into an equation for u and one for f. As this would imply
an unacceptable complication of the model, the main flow accelera-
tions are accounted for in a different way. In view of the fact
that the similarity hypothesis holds. good for fully-developed
straight and curved flows (cf. par. 4.4 and par. 6.4), the effect
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of the main flow accelerations is introduced

vos2 b 0f)
km U 57 (a BC)
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The transverse diffusion in the channel axis

in this equation, which is acceptable if the

of f due to the main flow accelerations are

by solving

is disregarded
disturbances

small.

The direction of the bottom shear stress is given by

S
ta = —
n o ]

el

m

Apart from

Re

'(:‘21|['€-I

the entrance and exit regions of a bend, where

v can be important, this direction is determined mainly by

the secondary flow. As the direction of the bottom shear

stress is of great importance to the transverse bottom

configuration in alluvial channel bends, the secondary

flow part of (7.49) has to be determined rather accurately.

Therefore the secondary flow computation will be reconsidered

on the basis of the gimplification